亚洲欧美日韩国产一区二区精品_亚洲国产精品一区二区动图_级婬片A片手机免费播放_亚洲国产成人Av毛片大全,男女爱爱好爽好疼视频免费,中文日韩AV在线,无码视频免费,欧美在线观看成人高清视频,在线播放免费人成毛片,成 人 网 站 在 线 视 频A片 ,亚洲AV成人精品一区二区三区

機(jī)械社區(qū)

標(biāo)題: 分享一本汽車構(gòu)造專業(yè)英語(yǔ) [打印本頁(yè)]

作者: 英語(yǔ)機(jī)械筆譯    時(shí)間: 2023-3-7 11:36
標(biāo)題: 分享一本汽車構(gòu)造專業(yè)英語(yǔ)
各位機(jī)械行業(yè)的老師好,,我是一名從事機(jī)械類翻譯13年的英語(yǔ)筆譯,,對(duì)機(jī)械行業(yè)的技術(shù)資料翻譯有一點(diǎn)心得,。大家如果有什么翻譯方面的問題,,可以發(fā)給我,一起討論,。后續(xù)我也會(huì)找一些英語(yǔ)的機(jī)械類工具書,,陸續(xù)發(fā)布到論壇,感興趣的老師可以自取,。

[attach]544583[/attach]



補(bǔ)充內(nèi)容 (2023-3-8 15:54):
之前發(fā)的書不知道為什么沒有了,,在三樓補(bǔ)發(fā)一下
作者: 游隼    時(shí)間: 2023-3-7 15:30
親,沒看到書啊
作者: 一修城    時(shí)間: 2023-3-7 19:12
書呢,?
作者: 英語(yǔ)機(jī)械筆譯    時(shí)間: 2023-3-8 15:54
不好意思,,我明明發(fā)過(guò)書了,卻沒有顯示出來(lái),,在這里重發(fā)一下 (, 下載次數(shù): 1)
作者: 英語(yǔ)機(jī)械筆譯    時(shí)間: 2023-3-8 22:39
發(fā)一段測(cè)試文稿,,看看能支持公式不


Formulas and Table for Regular Polygons.—A
regular polygon is a many-sided, two-
dimensional figure in which the lengths of the sides are equal. Thus, the angle measures are
also equal. An equilateral (equiangular) triangle is the polygon with the least number of
sides. The following formulas and table can be used to calculate the area, length of side, and
radii of the inscribed and circumscribed circles of regular polygons.

where N= number of sides; S= length of side; R = radius of circumscribed circle; r =  

radius of inscribed circle; A = area of polygon; and, a= 180° ÷ N = one-half center angle of one
side. See also Regular Polygon on page 74.

Area, Length of Side, and Inscribed and Circumscribed Radii of Regular Polygons








Example 1: A regular hexagon is inscribed in a circle of 6 inches diameter. Find the area and the
radius of an inscribed circle. Here R = 3. From the table, area A = 2.5981R2 = 2.5981
× 9 = 23.3829 square inches. Radius of inscribed circle, r = 0.866R = 0.866 × 3 = 2.598
inches.

Example 2: An octagon is inscribed in a circle of 100 mm diameter. Thus R = 50. Find the area and
radius of an inscribed circle. A = 2.8284R2 = 2.8284 × 2500 = 7071 mm2 = 70.7 cm2. Radius of
inscribed circle, r = 0.9239R = 09239 × 50 = 46.195 mm.

Example 3: Thirty-two bolts are to be equally spaced on the periphery of a bolt-circle, 16 inches
in diameter. Find the chordal distance between the bolts. Chordal distance equals the side S of a
polygon with 32 sides. R = 8. Hence, S = 0.196R = 0.196 × 8 = 1.568 inch.

Example 4: Sixteen bolts are to be equally spaced on the periphery of a bolt-circle, 250
millimeters diameter. Find the chordal distance between the bolts. Chordal distance equals the side
S of a polygon with 16 sides. R = 125. Thus, S = 0.3902R = 0.3902 × 125 = 48.775 millimeters.
No. of

-A----

--A---

-A---           R---           R---

-S--           S--

-r--

-r-


Sides        S2


R2             r2               S


r            R            r            R            S



3         0.4330     1.2990     5.1962      0.5774    2.0000     1.7321     3.4641     0.5000      
0.2887
4         1.0000     2.0000     4.0000      0.7071    1.4142     1.4142     2.0000     0.7071      
0.5000
5         1.7205     2.3776     3.6327      0.8507    1.2361     1.1756     1.4531     0.8090      
0.6882
6         2.5981     2.5981     3.4641      1.0000    1.1547     1.0000     1.1547     0.8660      
0.8660
7         3.6339     2.7364     3.3710      1.1524    1.1099     0.8678     0.9631     0.9010      
1.0383
8         4.8284     2.8284     3.3137      1.3066    1.0824     0.7654     0.8284     0.9239      
1.2071
9         6.1818     2.8925     3.2757      1.4619    1.0642     0.6840     0.7279     0.9397      
1.3737
10         7.6942     2.9389     3.2492      1.6180    1.0515     0.6180     0.6498     0.9511      
1.5388
12       11.196       3.0000     3.2154      1.9319    1.0353     0.5176     0.5359     0.9659      
1.8660
16       20.109       3.0615     3.1826      2.5629    1.0196     0.3902     0.3978     0.9808      
2.5137
20       31.569       3.0902     3.1677      3.1962    1.0125     0.3129     0.3168     0.9877      
3.1569
24       45.575       3.1058     3.1597      3.8306    1.0086     0.2611     0.2633     0.9914      
3.7979
32       81.225       3.1214     3.1517      5.1011    1.0048     0.1960     0.1970     0.9952      
5.0766
48     183.08         3.1326     3.1461      7.6449    1.0021     0.1308     0.1311     0.9979      
7.6285
64     325.69         3.1365     3.1441    10.190      1.0012     0.0981     0.0983     0.9988   
10.178

A  =  NS2 cot α ÷ 4

=  NR2 sin α cos α

=  Nr2 tan α


r  =  R cos α


=  (S cot α) ÷ 2  =


(A cot α) ⁄ N




R  =  S ÷ (2 sin α)




=  r ÷ cos α =




A ⁄ (N sin α cos α)






S  =  2R sin α






=  2r tan α =  2






(A tan α) ⁄ N





歡迎光臨 機(jī)械社區(qū) (http://giwivy.com.cn/) Powered by Discuz! X3.4