亚洲欧美日韩国产一区二区精品_亚洲国产精品一区二区动图_级婬片A片手机免费播放_亚洲国产成人Av毛片大全,男女爱爱好爽好疼视频免费,中文日韩AV在线,无码视频免费,欧美在线观看成人高清视频,在线播放免费人成毛片,成 人 网 站 在 线 视 频A片 ,亚洲AV成人精品一区二区三区

機(jī)械社區(qū)

標(biāo)題: 英文全書(shū)下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》 [打印本頁(yè)]

作者: 陳小黑    時(shí)間: 2015-1-9 22:34
標(biāo)題: 英文全書(shū)下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 $ [6 F( a( }; t: l- q! i! o

# {# }" ^- L7 X- v) | (, 下載次數(shù): 6)
$ o, b6 m1 l5 q8 t9 Y9 q, S/ X; `9 L* V+ m2 c# Y
(, 下載次數(shù): 6) # |. Z- b& ^4 a: h7 Y! R# _
( H4 B4 s; \, p& o; c, R) t# m
目錄
1 \4 v* S( Q  d- w# B: f) b; R( Z' Y6 {- K) x5 E9 ^
Contents
& i2 F% L# R( F+ L+ I: b+ \' g, C& }7 j/ B; R* p, K
Preface page xvii, B# O2 K& `4 l7 S  ^
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
/ }: g( I+ h1 w- K2 o1.1 Viscoelastic Phenomena 19 n' U* ^( }  {
1.2 Motivations for Studying Viscoelasticity 3
! }6 }& X, X3 q' w- W1.3 Transient Properties: Creep and Relaxation 3( I: V; t: i* p. ^6 r  E' u
1.3.1 Viscoelastic Functions J (t), E(t) 34 u6 @3 ~2 d; J1 S+ s
1.3.2 Solids and Liquids 7  z, e5 T4 g. o
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
6 Y# j& f$ b! P* Q2 \7 a# C/ k1.5 Demonstration of Viscoelastic Behavior 105 C7 r3 N1 t4 g7 b- T& @2 Z' A
1.6 Historical Aspects 103 D# Y! G, g2 E& u5 u
1.7 Summary 11# l) @% M- ]3 i% Z; C& l1 G- i% K1 I
1.8 Examples 11
2 l2 \  q0 f" k! T. W7 [1.9 Problems 12
. v2 U5 L, Y5 Y% A9 P% O* @0 w0 X2 d5 gBibliography 12
" Z1 V; g0 x4 Q8 b5 W
% `; J4 n$ m( U! t/ Q6 O  q
  Q* j& t# H8 P  z5 @* a9 b! H; x$ g+ Z( u8 K& P8 C0 n% n/ B- V
3 V+ k% ?/ Y1 C! C& g

& e0 w% J% v/ i& k0 p" \
) a+ B4 w9 l2 h' t! j2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
; q; W0 Y+ q3 k4 U$ y- j  S2.1 Introduction 149 _* N/ C- G: h+ w1 \, i
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
# S8 h' E; ?5 A3 n, h2.2.1 Prediction of Recovery from Relaxation E(t) 14
- s' d/ M" ~  c( v' e2.2.2 Prediction of Response to Arbitrary Strain History 15) E# f) W5 U4 a3 n$ d7 b) t4 C
2.3 Restrictions on the Viscoelastic Functions 17# f5 ]# ]+ J; {( N0 r! r
2.3.1 Roles of Energy and Passivity 17
# y. D7 W  E5 _& k/ P2.3.2 Fading Memory 18
( e' k7 F; J6 D( s# h0 I1 T" d2.4 Relation between Creep and Relaxation 19# f' Z* r) Q: R' T# e) L$ G
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
  s2 ^4 l! y+ E" u! [2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 202 h0 e4 T: Z; m" u& g& [
2.5 Stress versus Strain for Constant Strain Rate 207 w" ], b- Z6 }
2.6 Particular Creep and Relaxation Functions 21
! b( G: g# V+ ^1 M1 p2.6.1 Exponentials and Mechanical Models 21
0 m( R( p% u$ U& z$ f2.6.2 Exponentials and Internal Causal Variables 26
) ?9 N% m9 i1 O( ^5 d2.6.3 Fractional Derivatives 27
. F. ]; C) E# U, \' O2.6.4 Power-Law Behavior 28% A9 t5 X8 A' _
2.6.5 Stretched Exponential 29
- R* R  x. N/ S' T+ Y/ ~2.6.6 Logarithmic Creep; Kuhn Model 29
+ G7 w- x) |6 x. Q2 J' r/ P& X2.6.7 Distinguishing among Viscoelastic Functions 30
, r/ L# ~9 [  _2.7 Effect of Temperature 30
. K" b7 v2 a8 C+ V0 K2.8 Three-Dimensional Linear Constitutive Equation 33
7 f: Z1 J5 ^+ B2.9 Aging Materials 35* l" Z/ s' g# C! D, o
2.10 Dielectric and Other Forms of Relaxation 35* K9 G2 i- T1 A9 Y6 M
2.11 Adaptive and “Smart” Materials 36
5 T4 O8 M: T: K9 |2.12 Effect of Nonlinearity 37
) O* ~: @# L: T; i% t2.12.1 Constitutive Equations 37
2 p7 }- Y/ X- t. [. n9 {2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
3 G+ b9 z4 o% ^& |( B2.13 Summary 437 V6 b8 ^1 l: s2 z
2.14 Examples 43
" d$ J9 }1 ^5 e; t5 p2.15 Problems 51
& q4 P2 f. Q$ i1 L- b1 ]& EBibliography 52
% C5 o% D. z3 t9 v+ p
! T! v) o! V+ _0 i' C4 S1 [, [' S6 h6 V7 u/ K/ Y
" \9 ?3 A0 T* S* E* Z- i

0 n3 _! D- d/ Q% w3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
& D, A- l! x) V4 N: H4 H5 H0 X0 m3.1 Introduction and Rationale 55
9 |" s4 A5 f, a. n& R  Q3.2 The Linear Dynamic Response Functions E∗, tanδ 569 P& c; W: f( o, T0 \
3.2.1 Response to Sinusoidal Input 57- g: J+ f% k) u( B
3.2.2 Dynamic Stress–Strain Relation 59! j/ I  v1 q; G
3.2.3 Standard Linear Solid 624 z7 g5 B. k* H
3.3 Kramers–Kronig Relations 63. F: z* t3 x( g, S  ~4 E5 J- S
3.4 Energy Storage and Dissipation 65
% |6 p1 b& E6 w) _/ [0 ?/ a/ i3.5 Resonance of Structural Members 67" `, G& j7 b0 q5 }) B% ~
3.5.1 Resonance, Lumped System 67
3 `/ h. C( g: p9 z/ d5 a- K3.5.2 Resonance, Distributed System 71
) e5 X- I* @( S" a& |3.6 Decay of Resonant Vibration 74
9 X& v0 O' V- p* c( K2 ~4 A3.7 Wave Propagation and Attenuation 774 Z/ l4 Z& ^- t, U
3.8 Measures of Damping 79$ b4 l! [' ?5 E; m( {! K
3.9 Nonlinear Materials 793 q0 m3 j: Y! g; D0 `# m) W/ v& w) S
3.10 Summary 81
1 ]) D0 X7 p8 s, _# V$ ^7 G3.11 Examples 81
& w* \4 o5 A+ w3 U/ D6 W. N3.12 Problems 888 o8 `( E- u- \/ ~* y$ J' ^& p0 ^
Bibliography 89
' k$ s0 |' X$ ~3 m3 e' l: E. A1 S: _2 ?( K' D8 c5 r# D, G; b

% u  q- Z" b4 y  Z8 f7 g
+ I! `, h- A: h( z! T9 e% A' s4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 914 E9 [" J+ o7 i9 M2 q
4.1 Introduction 919 b" y( e! N# A8 J, `: C
4.2 Spectra in Linear Viscoelasticity 925 i7 z8 O  q, d! e( i
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 922 O7 W: m4 c, P/ B
4.2.2 Particular Spectra 937 W2 f; J" j6 H
4.3 Approximate Interrelations of Viscoelastic Functions 95
* e0 q, T* s% d' |) A+ j( F4.3.1 Interrelations Involving the Spectra 95
) l  S2 j: T, p' ]8 v4.3.2 Interrelations Involving Measurable Functions 98. c( E% [$ d' ~, L- O
4.3.3 Summary, Approximate Relations 101
% d; F' {" x# X0 A7 E% t: Y4.4 Conceptual Organization of the Viscoelastic Functions 101
, Y% E: u( z0 k7 S4 z) m% P0 X- ]6 O4.5 Summary 104- p, F0 [/ {( P1 B, I. V5 X
4.6 Examples 104
4 [1 V6 @" P% K/ K/ W6 t4.7 Problems 109
9 Y* X0 c) N( D1 b# F9 jBibliography 1096 J' u' }$ ~- `4 I+ u

: R/ \% B! l5 e  r  n' r
: J& y7 u: n$ R( S/ t9 p8 g( D7 g6 l( @7 j; {
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111, I$ h+ q2 {/ f, x: C
5.1 Introduction 111' Q; i5 D1 C: ]: _
5.2 Three-Dimensional Constitutive Equation 111
, [0 b0 I* x4 u3 Z+ c5 e5.3 Pure Bending by Direct Construction 112
4 I+ I9 A7 b) a; J0 x( v5.4 Correspondence Principle 1147 z. R* D# ~1 ?  w5 v; X' g
5.5 Pure Bending by Correspondence 116
4 z' y+ l' m" _8 A) a9 q5.6 Correspondence Principle in Three Dimensions 116
9 s2 q, R: z5 O  u& s8 a* w5.6.1 Constitutive Equations 116
$ v- P7 a' h) ~( h1 y1 E5.6.2 Rigid Indenter on a Semi-Infinite Solid 117/ {3 o, f8 q5 A9 U
5.6.3 Viscoelastic Rod Held at Constant Extension 1196 \2 c1 d8 ~+ |7 G( G5 G1 z% D
5.6.4 Stress Concentration 119# Q$ E; F/ A# }
5.6.5 Saint Venant’s Principle 120
& x, [+ z; W* B  s" p5.7 Poisson’s Ratio ν(t) 121
9 l$ p$ N- P3 V  X5.7.1 Relaxation in Tension 1213 Z# E3 g$ U: Q" q
5.7.2 Creep in Tension 123# C4 W/ ~8 D. L3 ^) w
5.8 Dynamic Problems: Effects of Inertia 124
( g6 x( p/ G& e' e! o" f5.8.1 Longitudinal Vibration and Waves in a Rod 124
0 y" E8 @" @  U" d5.8.2 Torsional Waves and Vibration in a Rod 1254 I$ Q* ~4 _" K
5.8.3 Bending Waves and Vibration 128
5 Z- \; ^# N7 q( D+ l0 h1 A$ i5.8.4 Waves in Three Dimensions 129* |2 w1 T2 w8 K* W5 N  V6 Q2 E
5.9 Noncorrespondence Problems 1311 Q, u9 s- F5 e; o9 t
5.9.1 Solution by Direct Construction: Example 131
2 X% j( ^' I% K& i( j" Q5.9.2 A Generalized Correspondence Principle 132) W% T+ K2 `4 _; U
5.9.3 Contact Problems 132
  ?: u* |) A  C+ T) N' k5.10 Bending in Nonlinear Viscoelasticity 133# Y* U, Z, q- t
5.11 Summary 134
( @: `9 d2 o8 o* E% H; _5.12 Examples 134: A7 e, O4 v5 z0 E5 y* B' p  z4 P) e
5.13 Problems 142& P& D3 s4 h1 y8 H
Bibliography 1420 e4 _0 \* [5 L8 {
6 t, x1 A/ ~% o! f& r

& X6 i7 Z8 \# j) w3 z8 J# D
6 U; }  P9 M+ Z. I) S6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145! T! U" ]" u( P4 Y) v& i: Q
6.1 Introduction and General Requirements 145
4 g9 j; V7 A* q$ [6.2 Creep 146) v# G, c3 t( x/ b4 Q  h. E* F; W: {
6.2.1 Creep: Simple Methods to Obtain J (t) 146
# ^# t% I* u5 p0 R% t; e& o8 {6.2.2 Effect of Risetime in Transient Tests 146- u! }! ^) g. P" M% R
6.2.3 Creep in Anisotropic Media 148! N2 \2 Y/ a+ h
6.2.4 Creep in Nonlinear Media 148$ u) `, Y2 Z  Z; P( f) p! N# G' G
6.3 Inference of Moduli 150
+ g" a3 c" H0 F% v6.3.1 Use of Analytical Solutions 1508 ^* y$ D% X, c3 `2 J( u
6.3.2 Compression of a Block 151
! u7 r! b" |% |% g6.4 Displacement and Strain Measurement 152$ F8 y0 q2 r3 N
6.5 Force Measurement 156
1 o6 w. ]+ Z6 z5 u6.6 Load Application 157& m+ ]& c8 R9 D* K0 y
6.7 Environmental Control 157
2 C! \) V7 m  X( D8 p6.8 Subresonant Dynamic Methods 158
! [- ^2 D$ s, K: `% F6.8.1 Phase Determination 158
& D$ _; A4 H& L/ i6.8.2 Nonlinear Materials 160( ?  \8 x# R$ `% A4 Z  D
6.8.3 Rebound Test 1610 E2 i# |  X, q1 e
6.9 Resonance Methods 161
( ?5 C. ^! G, y" b5 W" X6.9.1 General Principles 1613 y/ B' h8 W9 h, N9 ]
6.9.2 Particular Resonance Methods 163
$ K6 q: L; E( L4 v4 o; K( ]6.9.3 Methods for Low-Loss or High-Loss Materials 166
5 [+ E- ~. z1 b3 O! M2 q3 N6.9.4 Resonant Ultrasound Spectroscopy 168
2 a5 q- C( l% {# V6 C& a& R5 B6.10 Achieving a Wide Range of Time or Frequency 171
. X% H2 G) T. U7 V: |5 `6.10.1 Rationale 171
* q4 E$ X6 G  W) s7 x6.10.2 Multiple Instruments and Long Creep 172
  i* t/ T1 P% Q) T/ s% }0 Q1 K6.10.3 Time–Temperature Superposition 1724 B3 W& @& d0 B5 n8 F& u" O
6.11 Test Instruments for Viscoelasticity 173
* s; C; [( _9 p& V1 V6.11.1 Servohydraulic Test Machines 173
" p( p9 e, Q$ o6.11.2A Relaxation Instrument 174* g& @! c2 S0 d' l% L
6.11.3 Driven Torsion Pendulum Devices 174
- `2 }, D3 \' ]. R& j) K/ f6.11.4 Commercial Viscoelastic Instrumentation 1789 f6 p) Q! {7 R8 z7 I% o
6.11.5 Instruments for a Wide Range of Time and Frequency 179* x* Q2 R8 M1 f3 s& f  \
6.11.6 Fluctuation–Dissipation Relation 182
; @0 y1 G. e$ ?- x: s6.11.7 Mapping Properties by Indentation 1830 x' I- f4 Q# q0 r0 O8 F
6.12 Wave Methods 184
3 A4 U; s0 l) A2 X3 c% i6 I* v% _6.13 Summary 188
0 ~! M8 q) h8 R/ ^- G6.14 Examples 1881 P( O- Q% o( A; p$ X7 W. a% ?
6.15 Problems 200
: T! V8 u# M' k! |7 \0 r" BBibliography 2014 r4 a  T2 K5 r
# t! f6 [4 J2 i  P+ U

9 Z% v& ~/ Z4 f8 V  O+ e, `$ s2 U) f' j* _! h
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 2073 s6 F. K* @1 f& D- C& h4 H
7.1 Introduction 207+ _6 L/ G- y( D/ w& l
7.1.1 Rationale 207: W2 \" O* _9 m+ o6 ~
7.1.2 Overview: Some Common Materials 2072 g/ N% u9 n8 V3 m! c4 k6 @: `
7.2 Polymers 208% N8 [. w/ Q4 v5 w% D5 z
7.2.1 Shear and Extension in Amorphous Polymers 208
+ p/ L  F3 E; I4 }8 [8 b7.2.2 Bulk Relaxation in Amorphous Polymers 212
2 o9 ~5 N5 _1 F8 ^( f2 z7.2.3 Crystalline Polymers 213/ T7 m$ A5 \6 N% W2 B
7.2.4 Aging and other Relaxations 214
! p; \7 s& i% w( W6 R7.2.5 Piezoelectric Polymers 214
( J9 J8 G  B( J6 T, ~% A0 s7 c$ c. }& f7.2.6 Asphalt 214+ z" J. b+ S* X2 U1 C0 M
7.3 Metals 215
1 k6 c4 z* Z* G, o! n& k, j6 K+ [7.3.1 Linear Regime of Metals 215) N: w0 ~+ ~0 |- L3 T( [& K) t
7.3.2 Nonlinear Regime of Metals 217
( N6 m$ h6 V' g0 l. z" @" k7.3.3 High-Damping Metals and Alloys 219
  r6 s' Z$ ]8 i* A' {6 B7.3.4 Creep-Resistant Alloys 224% Z& B' r$ J9 |  L1 {$ S% f
7.3.5 Semiconductors and Amorphous Elements 225# w6 v5 T) Q* d% @
7.3.6 Semiconductors and Acoustic Amplification 226+ t% S' I. y7 p% ]
7.3.7 Nanoscale Properties 226
. u3 w0 @( Z2 m; Y) M7.4 Ceramics 227/ ]  f$ `9 L9 o/ @& y+ I
7.4.1 Rocks 2277 n% C8 c, O  Z) W0 D+ P
7.4.2 Concrete 229
9 ]3 i+ N+ P, W5 E* ~) h% {" _7.4.3 Inorganic Glassy Materials 231
8 N2 V" a3 L3 ~' O9 H7.4.4 Ice 231! h3 p  t  S" i* ]& J0 p6 O/ F
7.4.5 Piezoelectric Ceramics 232+ s7 t8 w  {0 q
7.5 Biological Composite Materials 233
3 p2 w/ I6 V; _7.5.1 Constitutive Equations 234
8 e0 B. [, k2 Q/ R$ n+ Y7.5.2 Hard Tissue: Bone 234# v# l2 k' Q3 Y  k% n% _( {6 J9 @/ g
7.5.3 Collagen, Elastin, Proteoglycans 236
3 t% M4 @5 P2 D/ a, `$ W% w7.5.4 Ligament and Tendon 237
. @8 E- L4 E$ {! \7.5.5 Muscle 240: N# K6 R) g# M" t+ X, ^- m) X+ l
7.5.6 Fat 243
' S8 q1 B& o% T1 o. J0 N7.5.7 Brain 2434 Q/ N6 h8 j+ }% F1 ~
7.5.8 Vocal Folds 244- [8 b  k7 ~& {
7.5.9 Cartilage and Joints 244- w' X2 S1 I& ~! n
7.5.10 Kidney and Liver 246
0 l% u* }. d8 w/ o! [- i; f7.5.11 Uterus and Cervix 246, m- r; ~+ o" x8 }, m
7.5.12 Arteries 247
3 V* L- \; ?* p9 h7.5.13 Lung 248
  q0 ~7 I8 V* l0 m7.5.14 The Ear 2482 w% m# C9 `% k9 @
7.5.15 The Eye 249; ?/ z% Z7 C  F9 F2 Q
7.5.16 Tissue Comparison 251" i, r; \/ s* r) S
7.5.17 Plant Seeds 252
$ F8 ^3 F; r2 U/ p: J: \( r! G7.5.18 Wood 252
% ^3 K9 R' {9 E8 R) d( i7.5.19 Soft Plant Tissue: Apple, Potato 253$ ~/ I$ E! P3 e
7.6 Common Aspects 2533 I7 ?/ ^1 u9 X( E1 g
7.6.1 Temperature Dependence 253
. O, h6 p7 z6 q; ]3 P# e4 E( ?7.6.2 High-Temperature Background 254, w+ r! `) h4 _: M& ]
7.6.3 Negative Damping and Acoustic Emission 255! E, C9 m7 A5 }3 V
7.7 Summary 255: |7 C! S8 e7 Y
7.8 Examples 255# `" n# {! J3 i: J& _; H- A- r
7.9 Problems 256
3 h" L' o7 A( OBibliography 2573 w2 \+ H2 Z1 `8 m

( W: l4 K9 ~$ n% X4 ?% r+ V& _! Q  w
* @7 j! E) d1 b3 j$ G5 z
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
$ q+ a0 I' J  m+ J! I1 ?8.1 Introduction 2710 ~/ ^- X! m! M7 J) e' h2 C0 a  {# [
8.1.1 Rationale 271
& p  ?6 v& ]6 {8.1.2 Survey of Viscoelastic Mechanisms 271$ y9 G( c' V8 I" W+ q( [+ n
8.1.3 Coupled Fields 273* e+ R# T9 E" e7 e& l
8.2 Thermoelastic Relaxation 274- N& m; l: ?  x3 I2 _* o
8.2.1 Thermoelasticity in One Dimension 274! P8 t4 O/ B3 V- q/ g
8.2.2 Thermoelasticity in Three Dimensions 275
2 U1 d/ ?8 L+ T( y. J7 a8.2.3 Thermoelastic Relaxation Kinetics 276
/ f# B3 {7 @9 ?$ s2 f! B; [8.2.4 Heterogeneity and Thermoelastic Damping 278
' _1 `! O% F' G+ C, S8.2.5 Material Properties and Thermoelastic Damping 2801 l  h; A' [/ u( C  ^2 o
8.3 Relaxation by Stress-Induced Fluid Motion 280
  U8 C9 a+ H  k5 s/ z8.3.1 Fluid Motion in One Dimension 280. d1 ]! d' g% U2 R* p" G
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281  w# h; {/ l4 ?7 `+ w
8.4 Relaxation by Molecular Rearrangement 286) B/ v1 U" j: N+ E2 k) g& x
8.4.1 Glassy Region 286
) V9 V, p' e; ?! t& L8.4.2 Transition Region 287$ t9 i6 u) h. I+ ~0 k0 u, ?8 p( _
8.4.3 Rubbery Behavior 289
! d2 u8 Y* q  c3 a% e8 M/ {8.4.4 Crystalline Polymers 2919 i1 R  n, t8 d# c' }
8.4.5 Biological Macromolecules 292; u. G3 o8 a0 ]8 o. s. r5 S
8.4.6 Polymers and Metals 292
+ W$ `6 `- `  |) l$ [4 a6 M8.5 Relaxation by Interface Motion 292( X8 g) o0 s9 X5 l7 x3 \
8.5.1 Grain Boundary Slip in Metals 292
: g5 |% f! [/ x: S3 W  T( z* Y8.5.2 Interface Motion in Composites 294  m, U6 S: x& f7 K  Y% J0 [2 t
8.5.3 Structural Interface Motion 2949 t# D( r* @3 q' J* A' i; z( G
8.6 Relaxation Processes in Crystalline Materials 294
) p) M) ]1 {- ]  ^7 s& B% \8.6.1 Snoek Relaxation: Interstitial Atoms 294
# c5 i! \8 t3 ^7 }* b8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298. s( h1 O! b- t' `: P
8.6.3 Gorsky Relaxation 299% E+ |0 x* w' I) S( ~( I% E
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
2 S: m! m. J: X6 w/ F* T8.6.5 Bordoni Relaxation: Dislocation Kinks 303
9 B1 }' m: l- m- s9 h0 t8.6.6 Relaxation Due to Phase Transformations 305! e0 B+ u  Q% ~/ Z8 D
8.6.7 High-Temperature Background 314
; g& m: t0 J% O  }, R; ~+ j! y% d8.6.8 Nonremovable Relaxations 315: ]% d# V1 g1 ]: Q5 q0 h
8.6.9 Damping Due to Wave Scattering 316
3 S' C+ k. g( S7 g. }8.7 Magnetic and Piezoelectric Materials 316% o" S  l- K0 y9 N+ O* r2 }
8.7.1 Relaxation in Magnetic Media 316
0 Z/ u3 T& J! |8 N8.7.2 Relaxation in Piezoelectric Materials 318% E+ M2 _& v. w$ f$ G' y# J
8.8 Nonexponential Relaxation 322
5 T3 F% w) X3 {& ~/ H8.9 Concepts for Material Design 323" t$ C" ]& e, G# |& K$ t4 O1 c1 w
8.9.1 Multiple Causes: Deformation Mechanism Maps 3237 E3 C/ m8 J5 K- X8 B7 x  h
8.9.2 Damping Mechanisms in High-Loss Alloys 326" B2 {) g' C( S9 M& g$ N4 U
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326; U0 q1 n$ ?7 T3 u0 T: z
8.10 Relaxation at Very Long Times 3275 S5 |0 r2 ?( n
8.11 Summary 327
8 W' j* u, F) \7 f8.12 Examples 328
) m% ~! S: x6 o5 [6 B6 t$ w1 g* i& r8.13 Problems and Questions 332
* h0 p. }2 |! N/ `' M) GBibliography 3329 s' I) A7 r$ O/ {) `" v$ ^
+ l" _7 c9 E+ g. f4 @1 g
* V- m0 c8 q8 R; `

( _! w6 ?- n0 c  ~  {( r1 s9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341/ u8 E& w* ^  a! Y
9.1 Introduction 3411 V$ s( `1 H! ~9 K( [5 R
9.2 Composite Structures and Properties 341$ U+ [7 c/ ]  I8 A; h
9.2.1 Ideal Structures 341
, P4 ]2 g/ U% n6 O4 ^: W9.2.2 Anisotropy due to Structure 342
2 q$ s2 n9 ]" |- L6 ^( \9.3 Prediction of Elastic and Viscoelastic Properties 344
4 c) d4 }% `( P, G8 X9 l& B9.3.1 Basic Structures: Correspondence Solutions 344
9 [$ r; H6 L, ]& q( `9.3.2 Voigt Composite 345
  v4 |7 C+ |9 x3 M; x3 L; Y9.3.3 Reuss Composite 345
+ @- [; e. p8 |+ l+ F. P- p, w6 a3 X/ o9.3.4 Hashin–Shtrikman Composite 346
4 G* {7 Y$ `" S. ]% p9.3.5 Spherical Particulate Inclusions 347
$ e5 i1 N9 ^: F+ p: j6 I- g9.3.6 Fiber Inclusions 349! N- K; i# k! k2 C( T+ m2 r* }& Y
9.3.7 Platelet Inclusions 349! Z% M3 E% y- W9 h
9.3.8 Stiffness-Loss Maps 350: t3 d( z+ }( o7 D$ i
9.4 Bounds on the Viscoelastic Properties 353
% l+ S- ]' p. n- Y. f9.5 Extremal Composites 354
- m' z/ Z% v( o5 x7 H8 G9.6 Biological Composite Materials 356
' f. D: h. c: [& A9.7 Poisson’s Ratio of Viscoelastic Composites 357
; r7 T2 D' a2 g2 m9.8 Particulate and Fibrous Composite Materials 358/ l3 i! N6 q5 F; q# D3 u9 x
9.8.1 Structure 3585 }& M! Y1 |) H8 {
9.8.2 Particulate Polymer Matrix Composites 359
: s4 r" L. ]: I3 z9.8.3 Fibrous Polymer Matrix Composites 361' _3 a9 i  l  u4 r, o& d' B
9.8.4 Metal–Matrix Composites 362
. c4 j+ \8 z; I$ X, Q  ~: y9.9 Cellular Solids 363
$ U0 ]/ h' H6 `+ \) ^" `4 d! H1 u9.10 Piezoelectric Composites 366
( s/ x, V  r7 @6 Q. l9.11 Dispersion of Waves in Composites 366" D) p. c( f) e$ Y- u
9.12 Summary 367
5 I5 ^5 Z5 L( _: F9.13 Examples 367
: V3 ?7 Z) X/ |7 @, v8 ^9 a9.14 Problems 370" H1 v- \# w; Y# z  y5 {- ~
Bibliography 3700 ~$ a! T' K( c! e1 r! ^

9 p& ^! z$ A$ V# n- a" O, P. Z" q4 a, r1 h. W  Q

! v; S7 e0 v2 C0 @  e10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
3 G( M, v; L8 [7 l10.1 Introduction 377
+ {1 R1 p0 a, g" Y; I  M+ Q10.2 A Viscoelastic Earplug: Use of Recovery 3779 p* e2 v) s( b5 n. L9 E6 t
10.3 Creep and Relaxation of Materials and Structures 378
: v7 E+ |# |7 x6 ~- Z: F9 ?10.3.1 Concrete 378! z8 r' `& s- V: c0 g
10.3.2 Wood 378& l4 |: ?$ O1 Y$ F( U
10.3.3 Power Lines 379
) s- K" Q& _. q& V1 d10.3.4 Glass Sag: Flowing Window Panes 380* l- ~% E7 G* U: [; {
10.3.5 Indentation: Road Rutting 380$ N' P, }2 i1 K9 D8 x! \6 F
10.3.6 Leather 381
, ?" P6 i- Q; _& l: K10.3.7 Creep-Resistant Alloys and Turbine Blades 381
3 |1 V/ C3 u2 h- `$ f10.3.8 Loosening of Bolts and Screws 382
/ ^  y" T& i7 E9 P% S10.3.9 Computer Disk Drive: Case Study of Relaxation 384
. d1 D$ T# _9 A& g10.3.10 Earth, Rock, and Ice 385
4 Z2 n, w( x" K% p1 |! E10.3.11 Solder 386
; P; D, Z6 k# _5 k6 G10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
) G) ]- D5 B: ]8 t10.3.13Tires: Flat-Spotting and Swelling 388
  C$ h6 p# S# S* e10.3.14Cushionsfor Seats and Wheelchairs 388
8 a/ G" r. Q! g6 b7 n. n10.3.15 Artificial Joints 389; H) [  J% t0 R# Y3 L1 v
10.3.16 Dental Fillings 389
( @+ Y* J- x) v. v# V+ T2 y% S4 r8 o10.3.17 Food Products 3899 o3 }1 ]7 i" X/ K+ t6 I/ z
10.3.18 Seals and Gaskets 390! ~  R8 W& ]: N: I! i
10.3.19 Relaxationi nM usical Instrument Strings 390
6 A6 V, p, m4 m8 u) N10.3.20 Winding of Tape 391
' L" {) [. e' z, V$ Y10.4 Creep and Recovery in Human Tissue 391
" l# \8 }! e3 r# ?10.4.1 Spinal Discs: Height Change 391
1 K- e/ w1 y# ?, W2 v8 l+ `: t. B0 X10.4.2 The Nose 392) l! {1 V6 n: e: n
10.4.3 Skin 392& u& n8 X. g  N7 U
10.4.4 The Head 3936 F7 [1 ]2 J  d. J$ V
10.5 Creep Damage and Creep Rupture 394
4 c  k) y: x$ k+ f10.5.1 Vajont Slide 3943 y: Z" o7 [& K; B8 |
10.5.2 Collapse of a Tunnel Segment 394
6 I. S1 P0 [7 ^10.6 Vibration Control and Waves 394
# [+ ~0 J/ u) C0 [10.6.1 Analysis of Vibration Transmission 3947 k, s5 m+ ~$ s* h8 \, Z$ c4 F5 M# b
10.6.2 Resonant (Tuned) Damping 397. ^3 x5 F, r3 R( Q* r5 S2 m
10.6.3 Rotating Equipment Vibration 3972 ~  a5 {2 [! d  ?
10.6.4 Large Structure Vibration: Bridges and Buildings 398
! w! x" N" @2 y2 H! c) n+ N( t10.6.5 Damping Layers for Plate and Beam Vibration 399
- k8 _+ _$ ^  N* h  p) N10.6.6 Structural Damping Materials 400+ C& m" x( [3 y
10.6.7 Piezoelectric Transducers 402
0 u0 P9 R5 p2 p) A8 }' x0 m" F10.6.8 Aircraft Noise and Vibration 402
' h7 u( ~$ w, G% v10.6.9 Solid Fuel Rocket Vibration 404
0 b$ d. k  B3 j- y" g10.6.10 Sports Equipment Vibration 404- x. F6 N, ]. r- Y) T
10.6.11 Seat Cushions and Automobiles: Protection of People 404' S. T/ W$ ^& t. f
10.6.12 Vibrationi n ScientificI nstruments 406# K% |7 {" r" q6 z* K+ j
10.6.13 Waves 406
8 P7 F' W6 @# U" c10.7 “Smart” Materials and Structures 407
7 ]' S# \2 }7 `6 v10.7.1 “Smart” Materials 407* W- q' a6 ~/ |
10.7.2 Shape Memory Materials 408/ H9 I9 q) r$ l& a  X
10.7.3 Self-Healing Materials 409
1 H  W. J# w) A% W, T1 A10.7.4 Piezoelectric Solid Damping 4096 z; E- r; D) T# h" b
10.7.5 Active Vibration Control: “Smart” Structures 4090 H; B) p; X5 h* m. q; T6 V0 q4 d
10.8 Rolling Friction 409
* [$ C. ^9 a6 V5 k. Y0 O10.8.1 Rolling Analysis 410
+ a( Z  K3 L# H' Y" a6 ?10.8.2 Rolling of Tires 4115 F5 g) Y1 l2 B4 H2 `: V. A
10.9 Uses of Low-Loss Materials 412
" R* \3 U8 y3 C10.9.1 Timepieces 4126 }+ A2 P4 b! {
10.9.2 Frequency Stabilization and Control 413; b  s, }; Y+ O9 t  m$ ?; [
10.9.3 Gravitational Measurements 413" H& k9 o( {0 J0 l$ Z& o3 x6 x2 z6 {
10.9.4 Nanoscale Resonators 414# q4 c* S2 b$ F& c5 x' p
10.10 Impulses, Rebound, and Impact Absorption 414( ~& t" r) e0 `3 E; W( G& o5 H6 E
10.10.1 Rationale 414
8 r9 w1 A# ^- Z$ a7 m10.10.2 Analysis 415
! |- X: O9 @  A* x8 g  A6 q- S  ?10.10.3 Bumpers and Pads 4182 s  q) v/ j6 B$ g) s
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
3 ?0 z: t4 A5 f! k+ S. j9 u$ d4 B10.10.5 Toughness of Materials 4197 _/ h2 {/ K, q' B$ V1 S, _# R$ u
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 4207 m! I! P) |, Y3 T* U7 n# H
10.11Rebound of a Ball 421
4 B: S9 a0 r; H- v/ I10.11.1 Analysis 421. L. j# G$ |# C4 I1 i
10.11.2 Applications in Sports 422, d2 [4 l" Q( w1 x9 A+ U; i* B
10.12 Applications of Soft Materials 424
: v: Z9 @3 a! G+ D0 |. e  l; Z10.12.1 Viscoelastic Gels in Surgery 424! j7 ]' Q7 N7 b: H0 Q
10.12.2 Hand Strength Exerciser 424
2 Z0 k4 t; k6 R" m/ L10.12.3 Viscoelastic Toys 4246 h2 y0 g- w2 O; C+ o
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
& Q  ^5 i  ~3 J) s10.13 Applications Involving Thermoviscoelasticity 425
/ ]1 l6 L- p3 u* K; c10.14 Satellite Dynamics and Stability 426
" B: ]' F9 w! \1 [* B10.15 Summary 4285 _2 z  ]% `1 G- \1 p' ]" [; l
10.16 Examples 429" f2 G. d% v+ n, M. K6 g  c
10.17 Problems 431) Q, Y; W# G/ Q  K7 @8 j. N& f$ g2 V4 n; X
Bibliography 431
2 t1 e4 d/ @; D  g6 j" Q, t# K9 M- T7 x/ h5 a8 V

+ v9 Q' N% R1 k  v9 i
, c; q: D) H+ ~% @1 m2 fA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
- j. h6 i% S/ `3 ~+ V. ^" PA.1 Mathematical Preliminaries 441
( X. e/ ^" L( ~+ g* x4 ^A.1.1 Introduction 441
9 d, i! M' _( W. H, u9 j3 N! s+ vA.1.2 Functionals and Distributions 441
3 M; M  ?) V% c3 G" X. qA.1.3 Heaviside Unit Step Function 442( B3 W* e' U6 f1 v. O& o
A.1.4 Dirac Delta 442
& R! t! q4 y/ A- NA.1.5 Doublet 443
& ]" ^% m7 O+ @A.1.6 Gamma Function 445
1 m% c3 }: X7 K  A' h# xA.1.7 Liebnitz Rule 445/ z, L5 J" y* G9 ~- t$ q- q
A.2 Transforms 4459 a9 j  W3 l* J* g
A.2.1 Laplace Transform 446
+ ^; ]/ h9 N. kA.2.2 Fourier Transform 4465 c' l8 m6 _+ F/ V
A.2.3 Hartley Transform 4476 i2 o: I2 x% R9 E; l, X% r6 P! o
A.2.4 Hilbert Transform 447
9 i. X5 e5 x& U2 w5 ]7 F, u2 Z( KA.3 Laplace Transform Properties 448
  ]! y+ W9 B* D0 C; i& U( I. J7 l% yA.4 Convolutions 4493 s6 z+ \9 X+ j1 t! f1 g$ M
A.5 Interrelations in Elasticity Theory 451& e/ ]& A6 v0 J" v$ D9 A
A.6 Other Works on Viscoelasticity 4517 b1 y5 Z2 f3 ?5 d8 M" x  D  F# z
Bibliography 452
( t2 q/ J  H# j# L/ N. n( b! U9 _' r* i" j# ^  C

5 v5 q2 f2 ^$ x4 n/ uB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4557 i/ n. C" B) S+ z# A" y' B; Y
B.1 Principal Symbols 4557 c3 k% K; ~. h( U* D
Index 457! _# [  T9 ~( h6 K

( i+ l2 @6 G, \- }( _. ?5 n! \  R) q$ d! p7 ~$ x





歡迎光臨 機(jī)械社區(qū) (http://giwivy.com.cn/) Powered by Discuz! X3.4