|
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
p5 ` t! s# r" s& m7 l+ X& S% T# K* I2 K- A
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下載次數(shù): 6)
2015-1-9 22:29 上傳
點擊文件名下載附件
第一部分 下載積分: 威望 -10 點
6 y2 U' d% B! n+ \, X# a0 ?6 [& ~- g9 E, }" G/ m4 R
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下載次數(shù): 6)
2015-1-9 22:33 上傳
點擊文件名下載附件
第二部分 下載積分: 威望 -10 點
. e' J9 `$ Q7 d% I
& a) q2 s# W$ V1 K/ x0 v/ }' V目錄3 @# o; N0 k. {8 Q( H7 |
2 H& A8 e: ^) U4 V, [Contents2 @# V% [1 k0 M3 y1 j: X
; Y. |9 D [6 J8 r' a- _; c
Preface page xvii6 Y% C, @0 r2 D' O* O
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1# x+ Q. T. K& I" h! g
1.1 Viscoelastic Phenomena 1/ I D- Z0 _8 e+ x# G$ c
1.2 Motivations for Studying Viscoelasticity 3
6 x* O; z7 T7 W# r3 W# N4 D) ]) i1.3 Transient Properties: Creep and Relaxation 3
8 ~: i" N1 K0 X1 u1.3.1 Viscoelastic Functions J (t), E(t) 37 V" C/ U; @5 m# F
1.3.2 Solids and Liquids 73 a5 j* ?2 L0 b6 l6 j; }% D
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 87 { }' R* x3 {7 D8 I& b, R7 V" P* O
1.5 Demonstration of Viscoelastic Behavior 10* K0 J! r% |5 Y: c" c( Z+ b8 v! n
1.6 Historical Aspects 10# G1 @- n, f! F' z3 b
1.7 Summary 11
8 j8 k* S$ j' r; W# l; ? @" z5 v1 G1.8 Examples 11
3 |- u/ h8 M0 V9 R9 i8 j1.9 Problems 12/ v4 L* e" E6 Y9 ]
Bibliography 12
' F; S7 Q# |' K
- V/ i% R, c. u4 i; m4 A6 Q7 T! _
; s# r/ o2 N# _7 [+ ?) @# y
& H. g2 I0 V' V" e1 g9 d+ A
$ l8 O/ P9 }) G% g5 m5 [5 ^/ X8 a6 x# d D* C, s
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 ]6 j+ L! L/ I! G; L' A2.1 Introduction 14
* Q# J5 k: i: U2.2 Prediction of the Response of Linearly Viscoelastic Materials 146 H3 |2 ^0 j2 }! ]
2.2.1 Prediction of Recovery from Relaxation E(t) 14
! U2 M' c$ q1 P/ u2.2.2 Prediction of Response to Arbitrary Strain History 15/ P* [6 R+ {$ _' X5 V: n }3 q
2.3 Restrictions on the Viscoelastic Functions 17; F. o8 I. K* P5 ^/ ^
2.3.1 Roles of Energy and Passivity 17' j* z$ K2 B( U+ |
2.3.2 Fading Memory 18( d3 `/ G* A: G$ Z
2.4 Relation between Creep and Relaxation 19& u' @2 F# }0 S# H! @. o
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
" T v5 J; s& J, {; L2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20% H- T% j5 {3 g6 {& Q0 o6 V
2.5 Stress versus Strain for Constant Strain Rate 20' M6 B4 C/ m @# _6 M& ]
2.6 Particular Creep and Relaxation Functions 21' P) s" a( u5 \% e) y$ ~- L# i2 v" K
2.6.1 Exponentials and Mechanical Models 21- | z0 u+ F& k' O$ x! `
2.6.2 Exponentials and Internal Causal Variables 269 E! R# n A+ ^# e7 Q$ ~7 ]5 u2 z
2.6.3 Fractional Derivatives 27
x. W' N. Y+ M( H" K8 P2.6.4 Power-Law Behavior 28
3 m$ \, Z& u$ T6 A2 v" x2.6.5 Stretched Exponential 29
7 m- y# x& U6 n2.6.6 Logarithmic Creep; Kuhn Model 29
% h7 S4 C+ O9 O2 K& u$ J2.6.7 Distinguishing among Viscoelastic Functions 30# B' Z* J7 u3 E# Y$ F' a4 W: D; r1 t
2.7 Effect of Temperature 30
1 H+ w8 S, s( S. L+ k2.8 Three-Dimensional Linear Constitutive Equation 336 g0 m+ A+ }# r3 c) ~
2.9 Aging Materials 35
; l* s* H4 a% J2 w% X% h( i2.10 Dielectric and Other Forms of Relaxation 35
$ S% J: j; x) J; I2.11 Adaptive and “Smart” Materials 36
* A- H+ y2 P/ u; f2.12 Effect of Nonlinearity 375 p; v: t" y% Z6 }0 V! @- ^# n
2.12.1 Constitutive Equations 37
5 Y* W9 H( }1 O. {2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
+ i0 n$ b6 N- G$ Q6 U6 ^3 Z1 r, j2.13 Summary 43
6 k, z$ s" ?( F( a2.14 Examples 439 m$ b7 W4 ~5 n& p }/ Y& ~
2.15 Problems 518 M0 Z4 {3 J7 |$ Z _9 K
Bibliography 52% C+ q# ]6 n' L; w+ Y
8 K) j% V/ Y$ w
: C! L) n! S9 o: m/ S$ M6 w5 |" C; F: ]* ]/ a- `5 D( U
% [2 _7 q, q+ q% p1 N, D% L+ o3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
( @ k/ }- @- M3.1 Introduction and Rationale 55) X! r0 E% b! ?' P
3.2 The Linear Dynamic Response Functions E∗, tanδ 56& c" X4 {! N B, b% g% B3 z
3.2.1 Response to Sinusoidal Input 57/ ~' u8 ^8 S2 C0 l& R" I4 D
3.2.2 Dynamic Stress–Strain Relation 59
3 H5 }( t9 Z& L# |3.2.3 Standard Linear Solid 62
$ g6 @5 \0 ?. Y% F3.3 Kramers–Kronig Relations 63- O2 [ ]1 `9 q6 ]
3.4 Energy Storage and Dissipation 65
8 K. Z, U# H/ ~" U8 X" O( T( |3.5 Resonance of Structural Members 672 v3 D1 _, P, k$ c
3.5.1 Resonance, Lumped System 67
; n! R+ q" L2 P# E& P6 L3.5.2 Resonance, Distributed System 714 @( h( ^5 c, k3 \: [4 ]) i
3.6 Decay of Resonant Vibration 74+ P2 A3 n" x C% P" @; z. A
3.7 Wave Propagation and Attenuation 773 s5 m1 ~. k0 F; Q
3.8 Measures of Damping 79
" j Q* s3 H8 _* U' h- ?3.9 Nonlinear Materials 79
0 k& f. y' u5 }$ l8 I+ f3.10 Summary 81% \4 \( }# K8 J X+ a6 m3 A
3.11 Examples 81# Y7 |7 S( T9 [; ^$ @7 m
3.12 Problems 88
! \( ~/ ?: M/ j+ t5 U3 j) D3 ^9 ABibliography 89. z* a; Z9 _0 g S' I# p
: Q/ W! X! V. I! V+ B! H2 N) a
2 h3 |. y8 m# K) S7 }0 X1 a
9 t, H3 i9 D% z: n' h4 w& `; O/ k4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91" {3 V( ] ?" `' m. h
4.1 Introduction 91: S- Z* F1 e' P, z+ O) T
4.2 Spectra in Linear Viscoelasticity 92
+ |, q, g0 r$ v2 K) {; f4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
. X/ p9 G' H) t8 S4.2.2 Particular Spectra 93, _' L S3 I" V% p5 s# Q7 ^
4.3 Approximate Interrelations of Viscoelastic Functions 95* x U! \. l% Q4 k! ~
4.3.1 Interrelations Involving the Spectra 95; {0 G L* l& C$ b9 _
4.3.2 Interrelations Involving Measurable Functions 985 X8 [' @$ K: V# A
4.3.3 Summary, Approximate Relations 101
- h! I) I5 q: U+ U9 Y) s# P: l& T' a5 H4.4 Conceptual Organization of the Viscoelastic Functions 1014 B0 b% u1 h' u+ g# L) l
4.5 Summary 104. A$ U. k N& e& Z; r7 z" L7 e* ~, A/ X
4.6 Examples 104) x7 n0 w K/ [1 s8 R6 e
4.7 Problems 109. | F$ a* d: |6 J) Z3 Z/ B$ ]* h4 c: b
Bibliography 109, m, Q4 ~8 q2 \5 Y
. y* G( O% Z- _. o* N9 l6 L$ R
" [: C) W [( i+ o# l: k; D$ o5 o/ E5 s7 M7 J6 N
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111) U& w) v3 j! K: `3 V
5.1 Introduction 111
0 B6 ^5 k z7 G( F& w5.2 Three-Dimensional Constitutive Equation 111
8 e' l4 P' n0 h$ P5 H; {+ f5.3 Pure Bending by Direct Construction 112 {* W* H W& Y0 h
5.4 Correspondence Principle 114# r+ B6 Z. f. \/ C
5.5 Pure Bending by Correspondence 1165 M( v2 O1 ] y5 u! p" C( x. S
5.6 Correspondence Principle in Three Dimensions 116
1 X$ I# r; I6 Y" J) ~$ f5.6.1 Constitutive Equations 116
- ]$ t. |7 c; j: F9 a5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
- c! A$ U' J: O6 e* T( }5.6.3 Viscoelastic Rod Held at Constant Extension 119+ s6 D o! L; U+ J$ k; H$ X( w0 y
5.6.4 Stress Concentration 119
( F2 A& \) J& f( y- q5.6.5 Saint Venant’s Principle 120( J/ x) L1 D# v" G3 C( Y. v
5.7 Poisson’s Ratio ν(t) 121
$ e; [1 [- N/ \5.7.1 Relaxation in Tension 121
6 U4 x( |# M5 D/ G$ A( Z$ l5.7.2 Creep in Tension 1237 D; C" x# V# z1 D
5.8 Dynamic Problems: Effects of Inertia 124/ J7 |# q* ^' u" c& F6 \
5.8.1 Longitudinal Vibration and Waves in a Rod 124$ f1 X+ w5 J1 u, D# J2 |) T
5.8.2 Torsional Waves and Vibration in a Rod 1253 v+ |) F% |! z1 e
5.8.3 Bending Waves and Vibration 128
) t& u3 A" ^( G8 R5.8.4 Waves in Three Dimensions 129
& j7 ~0 _- @" j: W- f# V! a5.9 Noncorrespondence Problems 131
6 k( \4 X! D0 k: z& F, z7 F5.9.1 Solution by Direct Construction: Example 131
5 e: ^1 t/ x& u$ |5.9.2 A Generalized Correspondence Principle 1321 S5 M+ v9 M0 g3 e, e$ u0 l7 I, f
5.9.3 Contact Problems 132
- q. N. ]4 l3 g% y5.10 Bending in Nonlinear Viscoelasticity 133+ j+ O( X1 d' _+ v. i
5.11 Summary 134
0 I6 y: i' H' { b5.12 Examples 134
+ u5 f7 O' i5 F% u5.13 Problems 1426 H" S: l' T% `0 R3 v) `- c# c
Bibliography 142% s: Q8 `" c) b5 V4 S% }; l' E9 M
9 M# \/ h' r* u, _. d, I/ ]
9 w- N/ w9 s, Q- y9 B1 x
( d( g4 H* @7 i, u+ i6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452 Q$ `* g/ L% e
6.1 Introduction and General Requirements 145. \0 @ {+ ~- o* c, V8 X
6.2 Creep 146
) x5 K$ x7 B. t9 s8 v5 ?6.2.1 Creep: Simple Methods to Obtain J (t) 146 v8 `$ w; R+ T! P5 _% Q1 s$ Q/ \
6.2.2 Effect of Risetime in Transient Tests 1461 f! ~2 S9 J' s) S9 X
6.2.3 Creep in Anisotropic Media 148# T, A7 C& `2 m9 F" k R
6.2.4 Creep in Nonlinear Media 148
8 m/ e# @0 Q% q. Y& Q) Z. W) ^6.3 Inference of Moduli 1503 k" S1 D$ G, h9 L* j
6.3.1 Use of Analytical Solutions 150) z2 ]7 x' A2 w5 {
6.3.2 Compression of a Block 151
6 g& A2 j* d9 |# @6.4 Displacement and Strain Measurement 152# ~/ ~$ d2 m0 h. ^8 P8 X
6.5 Force Measurement 156% y$ i% x3 A! L
6.6 Load Application 157
+ a$ q" [( W/ i p! s6.7 Environmental Control 157
1 j( ~% e/ Z: Y6.8 Subresonant Dynamic Methods 158& k8 `: g0 Q5 S5 C6 m
6.8.1 Phase Determination 1585 Z* k8 t$ A, W& k3 |
6.8.2 Nonlinear Materials 1609 Y) Z0 o" j6 G- ^! O4 b
6.8.3 Rebound Test 161
4 p n) V; P) q( t6.9 Resonance Methods 161
# S6 |: l8 `* V/ w6.9.1 General Principles 161" s& T% @+ l" @ b- D
6.9.2 Particular Resonance Methods 163( n: r0 _) E9 b) [- [
6.9.3 Methods for Low-Loss or High-Loss Materials 166
9 s B9 H0 A1 z% h1 p/ u: R: h6.9.4 Resonant Ultrasound Spectroscopy 168; t0 f: H6 ]- Y4 t1 U) ]0 G
6.10 Achieving a Wide Range of Time or Frequency 1716 p7 X: Z6 o) ^$ n5 P; R2 {7 Y
6.10.1 Rationale 171
2 B7 I* P0 F2 ]6.10.2 Multiple Instruments and Long Creep 172
5 \1 ^0 Q- e9 \% g6.10.3 Time–Temperature Superposition 1725 L# ]) J1 ?# l/ D j* O4 w; w$ r X
6.11 Test Instruments for Viscoelasticity 173. ]$ v6 d& n8 u) C& d* `
6.11.1 Servohydraulic Test Machines 173
/ w- h, k' C3 y2 J# o* Q# b6.11.2A Relaxation Instrument 174
' ?5 z1 v, d* O+ f6.11.3 Driven Torsion Pendulum Devices 174
4 ? Y* v" w, C- b9 G: r8 n3 S6.11.4 Commercial Viscoelastic Instrumentation 178! ^6 O$ R k& m: Y/ u
6.11.5 Instruments for a Wide Range of Time and Frequency 1799 A& ]" s5 |) ~$ T4 E' h5 u
6.11.6 Fluctuation–Dissipation Relation 182
9 y: d5 B. w$ S- A; _5 L3 d& H% P6.11.7 Mapping Properties by Indentation 1836 ?; P- W8 G3 r
6.12 Wave Methods 184. m8 x9 B4 q" m5 w1 S" @2 O
6.13 Summary 188
: |+ q( A+ z& G/ G" Y' \6.14 Examples 188( t. l" S0 l1 `) L5 }
6.15 Problems 200. Q# k' V7 |9 t1 j9 r* T1 A V
Bibliography 201. s R8 Q2 A J
' @$ e, r& ~& J7 s0 W4 q
: B0 u+ G e( i5 G" X! l, k* b7 V, v5 t+ a8 U) ^: K
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
7 p, I M8 K$ K3 b) Z7.1 Introduction 207
) ]- H* P( X. s# {' J9 Q7.1.1 Rationale 207
" b c3 r# g4 ~$ t/ K7.1.2 Overview: Some Common Materials 207
" s' |8 ?3 H/ Y6 g7.2 Polymers 208! s" x7 o# L" e0 E
7.2.1 Shear and Extension in Amorphous Polymers 208
7 [! f1 y( j Z7.2.2 Bulk Relaxation in Amorphous Polymers 2125 @1 M' P. L" c. y/ ?
7.2.3 Crystalline Polymers 2130 U) N* `8 I; q' C% v
7.2.4 Aging and other Relaxations 214
2 B. T* B# e- s7.2.5 Piezoelectric Polymers 214
N2 n( b0 k; @( a( t$ f7.2.6 Asphalt 214, c" U9 \7 y( _% o
7.3 Metals 2158 B% J6 b! O% T/ h3 [ c N) f
7.3.1 Linear Regime of Metals 215
* N1 w, }; v }4 y$ P4 t5 j7.3.2 Nonlinear Regime of Metals 217' R# I- z( D* D1 R8 P9 Q/ R
7.3.3 High-Damping Metals and Alloys 219 B1 i4 S8 h4 B% |
7.3.4 Creep-Resistant Alloys 224
5 h s! g6 T! |1 ~' \7.3.5 Semiconductors and Amorphous Elements 225
6 L2 P' L% \( v. J) `, k7.3.6 Semiconductors and Acoustic Amplification 226# @& p5 ~; H/ s; M/ Z( \8 Z
7.3.7 Nanoscale Properties 226
$ P* e7 j: S0 M0 g% i7.4 Ceramics 227; L9 w" D& @/ n% h. b" y' K5 H; E2 I
7.4.1 Rocks 227
7 `/ ?, l( i2 p, R7.4.2 Concrete 229
/ j' J& @$ Z9 ~5 H7.4.3 Inorganic Glassy Materials 2318 I& g- S q1 m$ z/ f
7.4.4 Ice 231
; p& H* M# z0 L7.4.5 Piezoelectric Ceramics 232
3 l/ s4 A/ o0 e$ Y. J. E b6 F5 x. Z7.5 Biological Composite Materials 233# ]$ G% E4 g1 p2 f
7.5.1 Constitutive Equations 234# R) r2 f+ N* l4 o+ f1 k; n: b' p
7.5.2 Hard Tissue: Bone 234 W2 _) ?$ ^, U5 @" k) G2 B' W
7.5.3 Collagen, Elastin, Proteoglycans 236+ T% D) w% h5 ]6 t8 |
7.5.4 Ligament and Tendon 237
4 ^. o; `" I! J o( _7.5.5 Muscle 2400 Y; h5 a5 y% V3 {$ b$ H( ?4 H
7.5.6 Fat 243/ X s- D) G" \0 d; T/ c$ k/ _6 a
7.5.7 Brain 243
1 L7 r9 h1 D& ?8 H# }3 `% G9 c) N7.5.8 Vocal Folds 2440 @4 f& U) E- ^9 X: v
7.5.9 Cartilage and Joints 244- p4 m) K* h% L4 o1 Q' Q, X1 O
7.5.10 Kidney and Liver 246
) O0 x; G E6 a+ ]! M K7.5.11 Uterus and Cervix 246: f* _5 g5 |9 D
7.5.12 Arteries 247
) M8 \% Y% G0 }7.5.13 Lung 248
3 r+ a$ O* k4 Y) t0 @7.5.14 The Ear 248
. s3 {( G7 T, P, |6 `' w1 a7 f7.5.15 The Eye 249
: R9 V/ v: w( I+ p& ^+ e( U' E7.5.16 Tissue Comparison 251
# {8 u( ^& N+ \( \" j7.5.17 Plant Seeds 252, B/ l! t5 i% [
7.5.18 Wood 252
- W& k! n1 M( J0 U+ C7.5.19 Soft Plant Tissue: Apple, Potato 253- [# ~( i- f: t, x1 e7 _! n: g
7.6 Common Aspects 253
* L- a6 X& ]! W% G3 ]( p7.6.1 Temperature Dependence 253
# I% r$ ]$ z( ^3 U) X, A7 |+ _7.6.2 High-Temperature Background 254: ]3 z: E6 A8 ]' E a
7.6.3 Negative Damping and Acoustic Emission 255$ E1 @' \% a9 u& ~' M
7.7 Summary 255& J* o! E& @6 F# w/ Q
7.8 Examples 255
+ |! m( Q6 o2 u7.9 Problems 256$ Q4 T$ f1 B1 ~/ P
Bibliography 257
9 K5 D+ {/ e% s0 Z) P
( Y/ {3 B" b4 b/ e
. X/ B/ }3 x6 e. e0 j5 U
6 V0 g( U6 T* V9 J% ^8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
2 f* f" {3 W& Y, J* U; T) w8.1 Introduction 271
) }# e' n9 y! J8.1.1 Rationale 2710 V" t/ q4 i& {+ t% E
8.1.2 Survey of Viscoelastic Mechanisms 271, y" l* X$ x1 Q
8.1.3 Coupled Fields 273
6 p$ z& i3 p9 W- o1 v/ v8.2 Thermoelastic Relaxation 274+ r8 U+ D: U$ l, j1 \3 `
8.2.1 Thermoelasticity in One Dimension 274% e8 C: R# ?8 V9 H2 O
8.2.2 Thermoelasticity in Three Dimensions 275+ q' l0 \! r% ]( C/ D+ @
8.2.3 Thermoelastic Relaxation Kinetics 2760 ]8 g* d+ Y' i; ]3 G' u( p
8.2.4 Heterogeneity and Thermoelastic Damping 278
& s# h- | x, X3 M( U8.2.5 Material Properties and Thermoelastic Damping 2808 D, J/ z' r0 V# J! P
8.3 Relaxation by Stress-Induced Fluid Motion 2801 k/ l9 u6 h* \4 c
8.3.1 Fluid Motion in One Dimension 280% X+ c" U- ~; I6 k
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 2819 O( B9 g( I/ d8 ]5 R+ J3 Y; t
8.4 Relaxation by Molecular Rearrangement 286
( G% W9 U- u2 g8.4.1 Glassy Region 286( H) i V' t% C+ J& k
8.4.2 Transition Region 287
& ^7 T: R/ y7 _# o8.4.3 Rubbery Behavior 289: H+ ^; f b+ e- p
8.4.4 Crystalline Polymers 2913 F/ j8 f7 |" ^ o7 ?) @: |. ~ }' _
8.4.5 Biological Macromolecules 2927 @1 x3 O/ W- q
8.4.6 Polymers and Metals 2926 i' c* Q L* P% U; q* u
8.5 Relaxation by Interface Motion 2922 K: `# p+ k3 i
8.5.1 Grain Boundary Slip in Metals 292) i* T: a$ o$ }# T0 g& C, b3 C6 \
8.5.2 Interface Motion in Composites 294
; Q' q6 c q; y8 ]: u8.5.3 Structural Interface Motion 294
) {6 w3 o8 o( q% D1 n5 o) b8.6 Relaxation Processes in Crystalline Materials 294) u* H6 {: }: K! Q% u5 r) p
8.6.1 Snoek Relaxation: Interstitial Atoms 294+ ]7 ]0 O: C+ Y1 \( R- ~/ I
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298/ w9 f" s5 x0 H$ \( T5 r
8.6.3 Gorsky Relaxation 299
) _3 j6 Y) q& R* a6 V8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300( M* i* N0 d! s$ a) T7 I
8.6.5 Bordoni Relaxation: Dislocation Kinks 303/ U5 O+ E8 E6 j4 I
8.6.6 Relaxation Due to Phase Transformations 305
8 E. W0 q0 J5 S8.6.7 High-Temperature Background 314
! I1 m6 V0 D- v) y8.6.8 Nonremovable Relaxations 315
7 e! s6 t& d/ j. N# ^8.6.9 Damping Due to Wave Scattering 316, n1 F8 S' l) R- P$ W& L
8.7 Magnetic and Piezoelectric Materials 3161 g, n4 e l* w, t: D( B! u1 z7 `
8.7.1 Relaxation in Magnetic Media 3166 W( e0 I+ m0 Z! g$ O) R
8.7.2 Relaxation in Piezoelectric Materials 318
+ Z5 u, Q4 J1 P% V+ p) ?% [8.8 Nonexponential Relaxation 322
& C3 d# w% L1 T1 B8 X8.9 Concepts for Material Design 323
" g0 | F+ {( l ]0 q( i. l8.9.1 Multiple Causes: Deformation Mechanism Maps 323' s% p7 R4 I' x
8.9.2 Damping Mechanisms in High-Loss Alloys 326: W, X4 q9 j5 B/ y3 ~
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326* `3 |* J' I( U3 y/ v, h
8.10 Relaxation at Very Long Times 3276 E1 N8 r5 I9 N) B; h
8.11 Summary 3273 z# d7 f0 h" d' V, L
8.12 Examples 328
+ M7 O! |" O6 A# Q! l; P( C$ [/ N8.13 Problems and Questions 3325 X6 R0 A. p/ J# }' g! }
Bibliography 332
: g9 |( z% ~7 {6 i, I/ D) _. G4 G W( T- ?6 B1 m& Y
9 F) _' P2 @# v# b/ C
7 b# D" I0 u9 i; H2 P9 i$ g6 C9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 3413 ]! N/ r* ]: u; [8 m9 X% o
9.1 Introduction 341 n, K2 I7 d9 y/ I2 o2 p
9.2 Composite Structures and Properties 341) ]) k% l, x7 B% ^
9.2.1 Ideal Structures 341
' `( S+ g: q9 F9.2.2 Anisotropy due to Structure 342
# L$ o1 Z6 R: s. Y* E( M/ A* [* R9.3 Prediction of Elastic and Viscoelastic Properties 344
+ U4 B. t( Q/ Y' m1 o% T9.3.1 Basic Structures: Correspondence Solutions 344
$ w/ X, _" O9 k" ~, I9.3.2 Voigt Composite 345. c( C# ~$ N3 |* V# H% Z2 D8 z7 ~
9.3.3 Reuss Composite 345
$ h5 d f+ X) o4 D2 y9.3.4 Hashin–Shtrikman Composite 346
0 ?6 v' M! [. r: D0 @+ s& W& q0 v9.3.5 Spherical Particulate Inclusions 347
( K# i% M) z; t, b1 |. j% c% ]9.3.6 Fiber Inclusions 349, h5 I8 e* c* \
9.3.7 Platelet Inclusions 349" ?+ O& |: ]$ g9 S/ x/ \1 ?
9.3.8 Stiffness-Loss Maps 3501 o$ J3 P+ Q* r( @
9.4 Bounds on the Viscoelastic Properties 353
* J6 V% z' O; a, L+ o1 z. f9.5 Extremal Composites 354
# X, i5 A2 J" U0 I7 m+ I9.6 Biological Composite Materials 356- A* ~) o) H0 n# [* Y. N
9.7 Poisson’s Ratio of Viscoelastic Composites 357- |$ d# E0 e- z Y: o
9.8 Particulate and Fibrous Composite Materials 358: q7 H; I- H/ e# w* x
9.8.1 Structure 358; p6 Q. Z" a( s, Q/ @4 i
9.8.2 Particulate Polymer Matrix Composites 359& a* |7 |* n* k% d
9.8.3 Fibrous Polymer Matrix Composites 361
8 j7 ~; _: O& W+ ?& I3 p6 i9.8.4 Metal–Matrix Composites 362/ |( c/ y: A, y- f8 E4 w8 v; }
9.9 Cellular Solids 363" W: X; H% D6 |( ~
9.10 Piezoelectric Composites 366
: E t4 F( D! t4 ^- n8 I, k9.11 Dispersion of Waves in Composites 366
/ D( D7 e8 @& M4 ^7 ]" b4 ?" n9.12 Summary 367" f: K8 B' }0 ?- Z% ^% e6 x* f
9.13 Examples 367
$ ^ ?4 u6 P' K; Y! z9.14 Problems 370
0 c0 f1 u- {8 {$ c3 j" UBibliography 3705 m' a+ j! j* w4 y% F
1 W& B) B6 Y+ d2 `# S0 N: ]9 u$ W0 r( H: a6 n7 k( t0 z
% q6 E ~2 Z6 D8 p8 m4 N3 m
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
: l+ h# \* I! P; A# v- C8 a10.1 Introduction 3772 I4 s" ~/ M5 N8 a4 H. B: a' O9 f' ?
10.2 A Viscoelastic Earplug: Use of Recovery 377
3 \1 c% x7 Q: w7 j10.3 Creep and Relaxation of Materials and Structures 3786 v9 y) U5 G# D" m
10.3.1 Concrete 378" y9 |" V6 Q/ y8 R
10.3.2 Wood 378 y( e5 p2 Q. M' v+ w% U E% @
10.3.3 Power Lines 3799 t, s) `1 r* x! S0 ^& y, N# m
10.3.4 Glass Sag: Flowing Window Panes 380
7 o3 Q+ D3 A* [8 ~; s! o10.3.5 Indentation: Road Rutting 380& ]/ J9 E' V8 j( |
10.3.6 Leather 381
9 P* U5 A& X7 S+ P0 G1 r10.3.7 Creep-Resistant Alloys and Turbine Blades 381* s& z9 n/ d. q% y* d
10.3.8 Loosening of Bolts and Screws 382% Q/ g$ ]0 n* D' {0 {6 Q0 d. A
10.3.9 Computer Disk Drive: Case Study of Relaxation 384! l/ u9 r# _6 h+ Y3 X7 ~+ b7 [
10.3.10 Earth, Rock, and Ice 385
$ V. B, w. q& W7 h- P/ l10.3.11 Solder 386
8 }. f9 U' P, A) e! k, ]10.3.12 Filamentsi nL ight Bulbs and Other Devices 3870 i# d+ l5 F- M) K
10.3.13Tires: Flat-Spotting and Swelling 388
; T& l3 ^/ @9 ]10.3.14Cushionsfor Seats and Wheelchairs 388' [# X, O2 s8 }" m5 R
10.3.15 Artificial Joints 389
1 a4 |( p$ s0 g/ b3 F. Z10.3.16 Dental Fillings 3899 S1 d3 h% O: U: R
10.3.17 Food Products 389
p9 u9 U$ S* {10.3.18 Seals and Gaskets 390
6 V+ X. K p) ^10.3.19 Relaxationi nM usical Instrument Strings 390
1 @- t- w/ c3 f( O: v0 Y10.3.20 Winding of Tape 391& ?3 G8 U" H8 I% v4 f1 ~
10.4 Creep and Recovery in Human Tissue 3914 y% M+ O1 R! G F9 _. A; R9 t
10.4.1 Spinal Discs: Height Change 391
/ V$ P! O0 D3 P+ G10.4.2 The Nose 392
* s7 ~9 Q1 w- l2 t0 S2 D' Z10.4.3 Skin 392
5 F( I0 L2 i( J. D10.4.4 The Head 3932 P( ~8 X9 Z8 p" t, G
10.5 Creep Damage and Creep Rupture 394
- [( S: w! n. R; [' h10.5.1 Vajont Slide 3940 G! h& d& x5 [' t% e( N* T
10.5.2 Collapse of a Tunnel Segment 394
" G4 B. K+ |1 a0 ?4 P6 A* Q5 ?10.6 Vibration Control and Waves 394
+ J5 @" u8 {1 F% h) K5 |$ @* L10.6.1 Analysis of Vibration Transmission 394, ^! {1 C+ V2 d, B0 v9 K
10.6.2 Resonant (Tuned) Damping 397
4 f; G+ c3 \; W: |- x8 i10.6.3 Rotating Equipment Vibration 397; ]1 [) l6 v2 w
10.6.4 Large Structure Vibration: Bridges and Buildings 398! G/ f% V8 g, W! ~6 Y: [
10.6.5 Damping Layers for Plate and Beam Vibration 399/ j' Z% }3 X" y- g
10.6.6 Structural Damping Materials 400
5 B) U9 V' } J0 r+ `7 v% C6 u10.6.7 Piezoelectric Transducers 402
. j U6 E" T4 {3 ?+ u- [# k0 ]6 Y10.6.8 Aircraft Noise and Vibration 402
. W5 C4 K. x8 i10.6.9 Solid Fuel Rocket Vibration 4049 _! w# X' Z8 I4 R
10.6.10 Sports Equipment Vibration 4042 \" n m5 o6 S
10.6.11 Seat Cushions and Automobiles: Protection of People 404
- J) K4 G; ^- K10.6.12 Vibrationi n ScientificI nstruments 406
; f: X( r6 e+ }! A' u10.6.13 Waves 406
8 L; X; F; {) o9 \8 F10.7 “Smart” Materials and Structures 407
3 s( O% {' a+ e) A/ t- Z1 W& r8 w10.7.1 “Smart” Materials 407
# `% l" E, p0 C; t3 e8 y* ~ f" j/ g10.7.2 Shape Memory Materials 4088 H5 B4 y. g5 k9 a" h/ W9 J
10.7.3 Self-Healing Materials 4099 u& t# n) V) S' {, j' `
10.7.4 Piezoelectric Solid Damping 409' ^5 x, |! J9 @ E' v
10.7.5 Active Vibration Control: “Smart” Structures 409% K5 o/ q) J' J8 y5 m
10.8 Rolling Friction 409
! p; e6 b. _; ^' a10.8.1 Rolling Analysis 410
3 ~; b3 ?1 s! \10.8.2 Rolling of Tires 411
_8 y& {( G% s9 b( z8 y! g, P10.9 Uses of Low-Loss Materials 4124 u+ F" }& h% |- e* u4 u/ S
10.9.1 Timepieces 412
2 m0 J+ ]2 T1 @10.9.2 Frequency Stabilization and Control 413% o1 l. m1 i' f7 L5 L( f
10.9.3 Gravitational Measurements 413$ h: w3 b$ M; d# A9 J
10.9.4 Nanoscale Resonators 414
7 x- T: r% F# `1 t' ]10.10 Impulses, Rebound, and Impact Absorption 414# X) {+ c* x+ h: o
10.10.1 Rationale 414
* u. F1 B5 o8 ]: i/ u: [* }10.10.2 Analysis 4156 q: w! U! O, r1 S) M% J. `7 \
10.10.3 Bumpers and Pads 418( j2 j* e* E/ c" S
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 4198 w$ C5 G5 h* y2 W& Y- S) ^6 M
10.10.5 Toughness of Materials 419+ J3 U1 H4 \8 l" ^% F$ ~7 c
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 4207 ]6 x7 ]) U, ]" C2 }& l
10.11Rebound of a Ball 421
+ {3 ~# b) X+ U) ~# }6 Y10.11.1 Analysis 421
4 {' n' ?' @9 W$ s. a10.11.2 Applications in Sports 4227 e! j$ E, j1 S u# i# `1 c
10.12 Applications of Soft Materials 424
. S, R0 V1 A# _2 B5 i- r1 I10.12.1 Viscoelastic Gels in Surgery 424/ S& L, ^0 ~' g2 z& i$ E
10.12.2 Hand Strength Exerciser 424, z# R$ g% p2 |% m
10.12.3 Viscoelastic Toys 424
4 O- N( j! C3 `* n( x7 W1 m* F0 Z2 U10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425; v+ H0 P# @* a: z) Q
10.13 Applications Involving Thermoviscoelasticity 425# o1 [! \; f% d. U
10.14 Satellite Dynamics and Stability 4268 l5 m* T: `1 \+ g8 A+ k) R1 i" p
10.15 Summary 428
& l: R- F+ t" g' ^10.16 Examples 429
/ a' ~( m+ D& ?) j10.17 Problems 431+ u8 ]% H" I0 n7 m, R2 W
Bibliography 431
& u) H" r$ D7 B/ O2 F* Y6 X3 M+ O
3 v+ j9 t5 C8 ?) a/ ^0 M9 b. i* G6 X1 `4 `+ A. K" u! H
! {! D0 v1 R: c; M4 XA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
$ [; }- W5 |3 u0 F% J6 t1 IA.1 Mathematical Preliminaries 441
8 ?4 R- I2 R6 k; C; }; s0 i$ xA.1.1 Introduction 441, ]$ o7 a0 m! D/ j5 S
A.1.2 Functionals and Distributions 441
: b7 V9 V( n0 n; FA.1.3 Heaviside Unit Step Function 442& e1 Q/ F- i6 @& r! H6 `. T8 Q3 C
A.1.4 Dirac Delta 4421 Z- }* w4 P; p8 x5 n! s
A.1.5 Doublet 443
! y) x/ j) I& KA.1.6 Gamma Function 445. \( O+ p2 `6 D4 x5 [; k
A.1.7 Liebnitz Rule 445* j/ } F/ J* F9 n/ o4 l: x5 T
A.2 Transforms 4450 Q0 D8 ]0 o7 b0 |
A.2.1 Laplace Transform 446
! p# }7 O% D2 x5 G6 |& h4 K3 IA.2.2 Fourier Transform 446, x7 k w, X0 h- k* d
A.2.3 Hartley Transform 4472 U1 }7 m0 }6 s: Y9 C' @
A.2.4 Hilbert Transform 447, ]) `8 ~7 Q2 R5 {4 H+ q
A.3 Laplace Transform Properties 4486 s6 R+ M/ L. x! E. }4 a' q( |
A.4 Convolutions 449' f+ K5 n9 f0 L9 v6 E( e) h! S
A.5 Interrelations in Elasticity Theory 451- u, v- H5 r) Y! z
A.6 Other Works on Viscoelasticity 451
1 T2 A7 l9 y+ i, z8 V0 ^2 CBibliography 4523 G# \7 o+ {* Q/ K* q. e( U/ `
. X3 j X0 D, y* m6 {! M; W
# _, q, l# O. {* `
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
, x. K9 X/ u0 m* ^: PB.1 Principal Symbols 455% g' W& d* ^. z/ y
Index 457
3 n8 O: j! P: K$ \; e
1 Z7 M# }. h3 L M0 w
2 e1 u9 P. K7 i3 E$ z) K' v1 { |
|