亚洲欧美日韩国产一区二区精品_亚洲国产精品一区二区动图_级婬片A片手机免费播放_亚洲国产成人Av毛片大全,男女爱爱好爽好疼视频免费,中文日韩AV在线,无码视频免费,欧美在线观看成人高清视频,在线播放免费人成毛片,成 人 网 站 在 线 视 频A片 ,亚洲AV成人精品一区二区三区

機(jī)械社區(qū)

 找回密碼
 注冊(cè)會(huì)員

QQ登錄

只需一步,快速開始

搜索
查看: 1125|回復(fù): 0
打印 上一主題 下一主題

英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》

[復(fù)制鏈接]
跳轉(zhuǎn)到指定樓層
1#
發(fā)表于 2015-1-9 22:34:06 | 只看該作者 回帖獎(jiǎng)勵(lì) |倒序?yàn)g覽 |閱讀模式
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
& G5 e( D( K/ ^: N# L5 M  B
3 }2 L, y8 F1 V! g, T3 u7 V5 [( G Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下載次數(shù): 6) ) L# d3 n# S, u  Y, P  y$ f

! y9 ?6 Z) r  S' o0 t* S Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下載次數(shù): 6)
* `  k. {* p  _$ b& R) D
/ g( i6 ~0 A$ \. I! F目錄
3 k, R7 _9 Q: t: ^) G
4 i: c6 v# N9 k' Y& ]2 r5 C  I+ AContents* x, G: m( r# y( ?6 {9 h% o5 z* g
' w3 a3 q$ j9 l6 n$ H
Preface page xvii1 r( s2 |7 I$ y9 c$ B6 ?
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
, N* K2 C/ ]. c! D/ F1.1 Viscoelastic Phenomena 1  r. O! L% D0 t* C
1.2 Motivations for Studying Viscoelasticity 3
* l9 ?( D7 I* Z3 g1.3 Transient Properties: Creep and Relaxation 3" L4 C* y0 @" g& o
1.3.1 Viscoelastic Functions J (t), E(t) 3( c9 G( l3 h# A- h
1.3.2 Solids and Liquids 7
# x# o# v9 O) I$ I7 q  a1 o1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 84 A- D! ]) o5 q* |1 _! v; o# I
1.5 Demonstration of Viscoelastic Behavior 10
% |  P; r/ b' Z0 y6 Q1.6 Historical Aspects 108 r5 S2 Z$ f1 d- y
1.7 Summary 11
1 ?, }6 R9 t# s% q' l# _$ w$ ^0 r1.8 Examples 11
7 W% O) Q+ A5 _, m* _7 ?1.9 Problems 12) V1 F$ j$ w0 U7 |, \1 i/ S
Bibliography 12+ b# c0 @) q) P7 I

  B( s. F" i/ B
4 \0 e, M6 h# j6 \' A
' H# X6 _! Z* |% w* ]$ ]; x; h
0 [4 k, S* Y( r+ P7 R) P2 h
" M$ e9 D8 E; _1 C& v+ Z- e1 Z9 u8 a
$ [2 v* _& m0 _3 g% F/ k& w+ n% j2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
" c6 y0 {/ W9 C/ W8 v/ M( |# u2.1 Introduction 14! x+ e6 ^8 K& B. i& q
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14! n4 [# T( x: G2 w& l5 g
2.2.1 Prediction of Recovery from Relaxation E(t) 14# y$ B1 ]' T8 Q% ~
2.2.2 Prediction of Response to Arbitrary Strain History 15
9 Q8 E. U0 W3 s2.3 Restrictions on the Viscoelastic Functions 17
! t) t; G9 Z0 ^5 t  L5 N1 M4 s2.3.1 Roles of Energy and Passivity 17* T1 a- J! H# t0 L, T
2.3.2 Fading Memory 18
0 v/ r, ^( U7 Z2.4 Relation between Creep and Relaxation 19: B/ h) T; P0 e) A  J& b
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19# C0 M6 v/ l( _8 X0 y0 P
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
) d* a5 \: U8 R) N2.5 Stress versus Strain for Constant Strain Rate 20
& e5 t4 |% j( y7 G& }+ K0 v- }0 \2.6 Particular Creep and Relaxation Functions 219 x! j/ l" R. m7 F/ M6 q" m
2.6.1 Exponentials and Mechanical Models 21, i+ Y. K7 F# n0 J* Z' `
2.6.2 Exponentials and Internal Causal Variables 26
( F! A& h% o# s2.6.3 Fractional Derivatives 27
! D9 e* q1 _' a6 {6 ^( G6 ?# r2.6.4 Power-Law Behavior 28+ |$ v1 Z7 V. k' p
2.6.5 Stretched Exponential 29+ u2 O/ e+ |; d
2.6.6 Logarithmic Creep; Kuhn Model 293 B' e' y. w2 J) \0 m& p8 L9 D
2.6.7 Distinguishing among Viscoelastic Functions 30) D. \) B9 n. @. U( y! x
2.7 Effect of Temperature 300 {/ Q# I* H0 `0 }0 U
2.8 Three-Dimensional Linear Constitutive Equation 33
. l; S7 l- t1 Q2 y0 z$ E; t; J% S1 \5 {2.9 Aging Materials 35% E) ~( e) f- l
2.10 Dielectric and Other Forms of Relaxation 35
' s8 c  ]2 a# K( u! X* v2.11 Adaptive and “Smart” Materials 36
# ]9 F  [9 n7 r8 s. z2.12 Effect of Nonlinearity 371 x. A0 j% Q! K$ l7 F* I
2.12.1 Constitutive Equations 375 E( F, h& Z' r2 w6 C, S
2.12.2 Creep–Relaxation Interrelation: Nonlinear 403 r( U+ M% ]$ |+ c: [
2.13 Summary 43
( d' t; f$ ]) C% H$ ~2.14 Examples 43
& e/ t; w* t* T2 e( n5 ^, e' e2.15 Problems 510 b, {: G: G3 C( x$ s( L1 A
Bibliography 52
: M% O/ ~# ^. J/ p' E7 J' h. O" Q* ]# t, H% G3 V3 W8 ^3 {
9 U4 s2 W, V) N* R0 x$ D' R
5 o4 n/ N% \* h# j( b. ?5 G

7 h7 V4 u) l! L7 E% t+ Z3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 ~; H+ w# q( t
3.1 Introduction and Rationale 55
0 s4 l+ S3 f9 ?% V3.2 The Linear Dynamic Response Functions E∗, tanδ 56
+ y3 {/ Q, B% C3 G3.2.1 Response to Sinusoidal Input 57/ U4 S3 D$ v: ~+ ~- `) d
3.2.2 Dynamic Stress–Strain Relation 59' G; K2 y( h0 G, S+ v; K
3.2.3 Standard Linear Solid 62
$ m) I3 x9 [) a: L% }+ Z  d3 _( r3.3 Kramers–Kronig Relations 63
% ^  D' J+ n+ u0 W. V& m) @3.4 Energy Storage and Dissipation 65! q7 W& |7 X2 a/ @, X2 f5 @
3.5 Resonance of Structural Members 67% U! z, |7 Z' |% x/ y, [$ g
3.5.1 Resonance, Lumped System 67
' E, D2 [$ [+ j/ O$ |  ]8 G3.5.2 Resonance, Distributed System 71
' x! U0 d: }: x3.6 Decay of Resonant Vibration 74
& J2 C+ W! l) }6 v& {0 r, i: l3.7 Wave Propagation and Attenuation 77
- b* x( @# o1 m" N- k0 C: Z+ x( P1 t3.8 Measures of Damping 79
4 [5 c) S) F7 Q( I- c% ~' j, |3.9 Nonlinear Materials 79
4 h5 p. N$ Z) d: Z3.10 Summary 81
: K. b4 D2 F5 `# L+ c2 v3.11 Examples 81" W# E$ s7 s+ M' A" B. G) b  a
3.12 Problems 88
$ U& J! O0 P7 o. ]' B: _. D/ z2 G# cBibliography 89
6 o8 J3 I3 a3 N) ^
7 x$ H; Y6 E# e5 q3 c; e; L8 o
7 `9 Q! `1 j* X
- ]1 n+ U5 S: U! c. s4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91* N! S$ v# S3 T  g7 ~* V3 N+ y$ ?
4.1 Introduction 91. x  V$ U. n8 `& q. B6 C  ~
4.2 Spectra in Linear Viscoelasticity 92
" [' H( @: l- p+ W9 e$ _5 _: D4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
' P& Q/ ]5 Z: O! ?4.2.2 Particular Spectra 933 y( s* D4 K8 Q! N
4.3 Approximate Interrelations of Viscoelastic Functions 95( A4 }3 y( \+ c/ ]% g3 U4 R
4.3.1 Interrelations Involving the Spectra 95
' [- o9 Q* G* m% G4.3.2 Interrelations Involving Measurable Functions 98& D/ h$ C* r9 ?6 D
4.3.3 Summary, Approximate Relations 101
0 h/ K7 T# h% ^6 E1 W* L1 C4.4 Conceptual Organization of the Viscoelastic Functions 101' V, `/ Z+ e/ p$ j
4.5 Summary 104
: m- V8 a- C2 H8 o. D4.6 Examples 1044 z1 r$ K9 \! u6 [  a
4.7 Problems 109
! X' J" _, I- r; ?Bibliography 109& H" P: _- X1 p: z! o1 T

1 ~6 O& S0 J) P0 ~( C0 h
. B8 n, ~8 i( d7 {" T! a0 O1 C
$ x: Z. Y5 e0 N5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 1110 K- u" ], D6 R6 b( @8 }
5.1 Introduction 111
0 U! @: ~6 N4 k' l+ a: u5.2 Three-Dimensional Constitutive Equation 111' ]( n- I, ]: ~) x" ?0 ~( e& `
5.3 Pure Bending by Direct Construction 1120 X' s0 P& }0 V6 D" @2 X0 R
5.4 Correspondence Principle 114: c+ W: U2 m2 Y: d4 I: O
5.5 Pure Bending by Correspondence 116( a2 W# N4 Z- g" R' B
5.6 Correspondence Principle in Three Dimensions 116
5 U3 L: k# b% ~0 u, t! Q: d. k5.6.1 Constitutive Equations 116
9 n! P" `5 G. z( c5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
: e+ d; g4 W7 [) V9 J! F* |& M, `6 Y# r5.6.3 Viscoelastic Rod Held at Constant Extension 1191 x$ V2 K) Z3 E7 z$ A: z0 l
5.6.4 Stress Concentration 119
7 w  I, U6 Q' _0 q% K+ V+ F! H# w& \5.6.5 Saint Venant’s Principle 120: e0 q- M, {5 _
5.7 Poisson’s Ratio ν(t) 121+ c0 |8 K: D! s+ E$ C7 v
5.7.1 Relaxation in Tension 121
& u3 l$ p. g5 D4 N( S' M5.7.2 Creep in Tension 123
" |4 v3 L+ s) r! C, c+ d# v5.8 Dynamic Problems: Effects of Inertia 1248 V# Y3 M4 z6 c0 ?
5.8.1 Longitudinal Vibration and Waves in a Rod 1248 V9 Z' t4 H: k
5.8.2 Torsional Waves and Vibration in a Rod 1258 \7 P# T* I! [* U
5.8.3 Bending Waves and Vibration 128
! s" ^9 d- W, I, l5.8.4 Waves in Three Dimensions 129' j  W/ w9 K$ ~* r/ @
5.9 Noncorrespondence Problems 131, S- j- X, ]0 S& ]+ E7 D9 n7 ?- M
5.9.1 Solution by Direct Construction: Example 131
- b( [8 x+ E( F$ s5.9.2 A Generalized Correspondence Principle 132% d$ k7 V+ ^4 T
5.9.3 Contact Problems 1327 }4 `% m; X3 R% z
5.10 Bending in Nonlinear Viscoelasticity 133
5 {+ a2 d8 p6 I2 t$ f5.11 Summary 1345 [; \! u1 x. {" a$ `
5.12 Examples 1346 ]0 a  r$ U( k8 V' ]% P8 v7 H$ O
5.13 Problems 142
7 j& |# D0 c( c% KBibliography 142
* W# j1 G4 S9 m9 q' V
- P! F# q$ \# @: Y0 N7 h9 V5 Q! g

3 D& |" P# w2 r. V6 Y7 e4 j6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452 X/ I  O( O% n/ X
6.1 Introduction and General Requirements 145
' Q9 s& {. P6 P7 z: x6.2 Creep 146
8 L$ I* q7 {! ]/ t6.2.1 Creep: Simple Methods to Obtain J (t) 146/ m5 f3 }2 O$ h% ?& v
6.2.2 Effect of Risetime in Transient Tests 146+ y% R3 F6 t3 A6 _! {& g0 l
6.2.3 Creep in Anisotropic Media 148* C! K3 s7 q# y: f
6.2.4 Creep in Nonlinear Media 148: J0 V2 Q# _4 h1 b6 Q/ R! c6 N3 {
6.3 Inference of Moduli 150# S. O5 f1 k3 `+ s, J8 q# g$ Q$ B
6.3.1 Use of Analytical Solutions 150: G* l4 A) q5 m8 V+ N  I4 _% i$ J
6.3.2 Compression of a Block 151
* y; H2 C' z0 O% b) c5 i' P, k6.4 Displacement and Strain Measurement 152
0 G4 A6 U3 G: R: l5 \% Q6.5 Force Measurement 156) c- d) v, u. S. a3 Q
6.6 Load Application 157
1 M# M" V3 `( I* v6.7 Environmental Control 157
, |- E( T6 T: {- H, d! g, Z$ R" [6.8 Subresonant Dynamic Methods 158
% S7 d' d$ b6 M1 B0 \0 P. r7 }6.8.1 Phase Determination 158, e3 q; C3 K0 m0 X. X  E
6.8.2 Nonlinear Materials 160
* H2 z5 ?! A( K) Z3 k. h1 K  D6 V6.8.3 Rebound Test 1616 R+ _5 X& j" _8 k
6.9 Resonance Methods 1619 d& U' N) W- I
6.9.1 General Principles 1614 i+ M5 L% ?+ E* g; i+ W4 S
6.9.2 Particular Resonance Methods 163
/ Y/ D/ N: z# q2 c  B. _, u6.9.3 Methods for Low-Loss or High-Loss Materials 166
0 {9 @  T' F' O1 O/ [, w' Q6.9.4 Resonant Ultrasound Spectroscopy 168
, J7 w9 _& {! z/ K4 v6.10 Achieving a Wide Range of Time or Frequency 171
- I3 g: }3 O: }; p- t6.10.1 Rationale 171
2 J& }( D( ]$ q6.10.2 Multiple Instruments and Long Creep 172
$ t+ m. l1 }% W- ^5 R4 O! p6.10.3 Time–Temperature Superposition 172
1 `* g$ d0 h( X0 w6.11 Test Instruments for Viscoelasticity 173& A8 ^# Z5 M. T7 a
6.11.1 Servohydraulic Test Machines 173- {) [1 \* {  w
6.11.2A Relaxation Instrument 174
$ D( M" u4 v+ `! l$ s$ C6.11.3 Driven Torsion Pendulum Devices 174
: z7 @  q  J3 n) ~9 G7 p6.11.4 Commercial Viscoelastic Instrumentation 178
6 v6 L9 S  v: S7 E/ u8 y. k$ a6.11.5 Instruments for a Wide Range of Time and Frequency 179
5 o1 K' e. X4 k$ M; Q; Q6.11.6 Fluctuation–Dissipation Relation 182
" u( V8 g+ S2 C& ^$ j! F, ~0 X$ s6.11.7 Mapping Properties by Indentation 1831 d: |" g) E: N1 h9 Y, ^" q
6.12 Wave Methods 184
) J$ ~- b6 D/ p! t& B: j" a6.13 Summary 188- l' m: u  _' F8 p3 z% j! \
6.14 Examples 188! I% [& R$ ]: H. w* u
6.15 Problems 200
" B( k, [4 i) z8 vBibliography 201
" T/ w) C5 t8 @+ ]
* G4 X  K# A6 P: F: U1 r3 \% i# F! M$ Z6 F/ q
% @* w3 ]  q7 c/ C
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
( K& U7 m3 n/ q7.1 Introduction 2075 a: _# P2 C- ]8 y& S
7.1.1 Rationale 207
* O7 x8 i- Q5 [9 `+ h3 U5 C% i7.1.2 Overview: Some Common Materials 207# m, t. [, A1 Y6 ^+ K
7.2 Polymers 2081 m& O( d2 X+ \2 H+ P' }/ R+ \6 j* t
7.2.1 Shear and Extension in Amorphous Polymers 208
& b- b0 g5 y; X9 \7.2.2 Bulk Relaxation in Amorphous Polymers 212
/ d, E( n' Z' _& }& {( s! [% O7.2.3 Crystalline Polymers 213- E& `" ]. N& o1 S' H/ w1 S3 W' K
7.2.4 Aging and other Relaxations 214
1 w% P2 R) a3 w% G7.2.5 Piezoelectric Polymers 214* R8 L, A3 K8 l4 O* r# g
7.2.6 Asphalt 214
6 I2 K& f# T3 v5 @- J! t; V" M7.3 Metals 215
! p2 |0 z. X) ]- T; [# _1 q2 D7.3.1 Linear Regime of Metals 215
6 K: q( P! B) K- Y3 A  M- l7.3.2 Nonlinear Regime of Metals 217: {5 t" X7 N* p; `6 q; q: _; h8 S
7.3.3 High-Damping Metals and Alloys 219/ m- ^4 t0 f! ^" R. o% x
7.3.4 Creep-Resistant Alloys 224) v$ }2 c) t) M" g* c% K
7.3.5 Semiconductors and Amorphous Elements 225
1 [, J2 ~, j* L2 l9 U$ ?. y7.3.6 Semiconductors and Acoustic Amplification 226
8 h9 k7 l  l  e3 g/ ~4 _  _5 G7.3.7 Nanoscale Properties 2260 M* \; v7 p. n3 Z. {
7.4 Ceramics 227
3 y4 o- c+ Y6 B3 W8 P% E2 B+ [7.4.1 Rocks 2270 C; z6 w  p4 c5 s4 F4 ]
7.4.2 Concrete 229# p# W; z, T$ T  o- J& D. k
7.4.3 Inorganic Glassy Materials 2318 o# q3 \, o# o
7.4.4 Ice 2310 e  ]6 ?0 Y- B9 z, u' @
7.4.5 Piezoelectric Ceramics 232+ c" y2 U* k# ^. R& H8 V5 G2 @
7.5 Biological Composite Materials 233
$ R+ D/ r) V' ~( x  _) O! G* z7.5.1 Constitutive Equations 234' R  c$ ?  u- ?6 @7 [2 d
7.5.2 Hard Tissue: Bone 2342 {+ k$ h, M6 C  @
7.5.3 Collagen, Elastin, Proteoglycans 236, f% P: j* k- Y! M  o
7.5.4 Ligament and Tendon 2372 P( c0 n7 M8 L  M  Z9 v
7.5.5 Muscle 2405 l: V' y6 M. c1 v
7.5.6 Fat 243
9 B/ o' C4 `3 i6 l# W  Y* u7.5.7 Brain 243% L9 Z- M& `' c& G5 ~4 w* r* V
7.5.8 Vocal Folds 244
  ^! u4 z' R% o0 |0 k7.5.9 Cartilage and Joints 244
0 l$ e) s1 U: C& M3 V) Y7.5.10 Kidney and Liver 2469 O" B, s! L# a* Q+ B
7.5.11 Uterus and Cervix 246
' a  O9 r! W7 |$ J/ S/ A7.5.12 Arteries 247+ L' T/ q9 Q, k! |
7.5.13 Lung 248' I! s$ H$ Z  O5 u0 y8 `0 w6 K9 ~
7.5.14 The Ear 248! z: ~- f5 q7 j( c9 M; _: b1 e; J
7.5.15 The Eye 249
/ g! A; a7 e! @" D9 V7.5.16 Tissue Comparison 251
$ e4 \' z4 p; q& g6 ~7.5.17 Plant Seeds 252
  A( \; R9 P% K  p  M7.5.18 Wood 252
! K0 H+ Y% ]3 D: U- B3 ^7.5.19 Soft Plant Tissue: Apple, Potato 253
! h' m0 Z! R- o( [  N7.6 Common Aspects 253
& M/ U( _% q# D, m/ V) I7.6.1 Temperature Dependence 253
  ]7 X+ U9 x/ C) R" D( M2 i7.6.2 High-Temperature Background 254# m% N/ k! U% E0 n+ H1 Y8 U
7.6.3 Negative Damping and Acoustic Emission 255
* W. K. |) i2 Z/ @9 A: A' r- B7.7 Summary 255- F9 q& v& o/ G) P, r# ]( D
7.8 Examples 255
% L' P9 S. z/ R; ~- v: j7.9 Problems 2562 l& q, c/ v3 g0 _  F
Bibliography 257: i; o; q; q( K' N6 t3 b1 [

8 I# V+ P" M2 g7 Q/ E" n, E+ p9 w1 a% O6 C# d5 {

4 }* f1 v& \# x, i# F6 @: Q8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271- ^4 {$ R9 ]9 j5 e( G" q5 y
8.1 Introduction 271
( _- j9 B7 y" J8 _; r4 Z+ Y8.1.1 Rationale 271
4 y, B4 l8 F  }# S: P6 z8.1.2 Survey of Viscoelastic Mechanisms 271
+ S; s7 U1 d6 V, k+ ~0 A8.1.3 Coupled Fields 2738 N% h0 s/ i& \9 @  ^  S6 M# Z! m/ t
8.2 Thermoelastic Relaxation 274* u* ^  Y- w5 W2 J- U
8.2.1 Thermoelasticity in One Dimension 2747 v& P6 f' S* g3 @3 C, D& ?
8.2.2 Thermoelasticity in Three Dimensions 275; Q4 W% S* o. L+ K  N; d3 H
8.2.3 Thermoelastic Relaxation Kinetics 276
. y% p+ Q$ C3 |& x8.2.4 Heterogeneity and Thermoelastic Damping 278- W; `0 J# ]$ ]1 U- ^
8.2.5 Material Properties and Thermoelastic Damping 280
( o: y! y& d+ A8.3 Relaxation by Stress-Induced Fluid Motion 280
! c( N  Y' V$ g7 W2 ]* t8.3.1 Fluid Motion in One Dimension 280( A0 J+ @: p2 w8 n; Q) P
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 2811 P$ }2 v% e2 l' y( n
8.4 Relaxation by Molecular Rearrangement 286
1 _& t) Z1 o( n8.4.1 Glassy Region 286! F  }. _: y5 Z9 }
8.4.2 Transition Region 287) E8 Q& t" Z& h! Y
8.4.3 Rubbery Behavior 2892 `( w; Z1 P1 ?1 O* @9 o) F( m; k* F
8.4.4 Crystalline Polymers 291: m: R2 ?* M( J' E2 b1 p2 P
8.4.5 Biological Macromolecules 292* U8 z9 b7 f% |1 w
8.4.6 Polymers and Metals 2920 u" ?2 X: L7 B, k+ F4 i: r, x
8.5 Relaxation by Interface Motion 292" e6 x; L% d" J; f8 `
8.5.1 Grain Boundary Slip in Metals 292
- F6 j% x: |, C+ Y8.5.2 Interface Motion in Composites 294
; q4 o1 I4 t. B3 P) g8.5.3 Structural Interface Motion 294
& ^* O8 w0 P2 b8 @8.6 Relaxation Processes in Crystalline Materials 294  U, v8 \: d* A$ ?
8.6.1 Snoek Relaxation: Interstitial Atoms 294. ~! T. _; r# C( a2 L! t) m  [5 h
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298* P0 h1 W4 T0 I9 s) j* P7 j
8.6.3 Gorsky Relaxation 299
# c. t6 P1 a$ z  d+ R* V  o7 L8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300/ N$ i+ T, q3 H5 ^9 N4 |; ~
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
1 q& s) t. `/ j  S8.6.6 Relaxation Due to Phase Transformations 305
) n2 @+ K, w' `5 `: q. M% Z- r) c" D8.6.7 High-Temperature Background 314
5 y2 j  m' s7 k. u3 }! ?$ ]8.6.8 Nonremovable Relaxations 315
4 }- e2 k2 v$ ^) \$ C- t5 t8.6.9 Damping Due to Wave Scattering 3168 Y/ X2 C& B$ l. f3 g# p* S
8.7 Magnetic and Piezoelectric Materials 316
7 c" _. R4 u  v& \+ O* Q5 T* `8.7.1 Relaxation in Magnetic Media 316( _8 L: ], W# |. M; I
8.7.2 Relaxation in Piezoelectric Materials 318& k1 Q+ Y8 _1 Z1 ]$ u( ?
8.8 Nonexponential Relaxation 322( C- M/ m( X5 T$ D3 S4 K
8.9 Concepts for Material Design 323
: _. Z( r$ v# O; d7 w8.9.1 Multiple Causes: Deformation Mechanism Maps 323  |0 L, ?" x& w! z
8.9.2 Damping Mechanisms in High-Loss Alloys 326* }3 K8 Y4 v7 r3 e4 M
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
4 X8 _; F4 R( M8 s" p6 v1 F8.10 Relaxation at Very Long Times 327
7 x6 s4 g+ V) N1 X1 C7 ^7 A1 C& z8.11 Summary 327+ N+ j5 D+ Y$ h5 A
8.12 Examples 328( |6 ~! z+ b9 e
8.13 Problems and Questions 332
: R- C* N) f6 e7 R  GBibliography 332
% a' U0 z/ M, c2 o7 P3 `6 O& `% L: S
9 V9 _4 s- L& ?( {$ p) Y1 i

, n  H/ r" u5 t+ Q9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
9 Y4 L8 N; R# V; P8 P1 K! h9 ~9.1 Introduction 341
% C" J$ K/ v# h  D6 b$ Q- a: J9.2 Composite Structures and Properties 341
8 Q$ w$ Z5 b9 C) M9 R3 D9.2.1 Ideal Structures 3414 W5 D1 `- Z1 I
9.2.2 Anisotropy due to Structure 342/ M6 M& i: F0 K
9.3 Prediction of Elastic and Viscoelastic Properties 344
! U' P7 t: G  ^# _8 J+ Y: f* ]6 o2 G9.3.1 Basic Structures: Correspondence Solutions 344  S; h8 H  X% V9 I7 s: K8 I# ?2 D% z
9.3.2 Voigt Composite 345/ D1 E* a& `- ?9 Z% o
9.3.3 Reuss Composite 345
: ~& @4 X( _; C0 G* U( y0 J+ n9.3.4 Hashin–Shtrikman Composite 346
' F8 Q0 \+ M/ l: k0 O( \9.3.5 Spherical Particulate Inclusions 347( q8 V  h2 Y# [$ c8 @
9.3.6 Fiber Inclusions 349
; L  n* d" [3 M& Y: }, r# k9.3.7 Platelet Inclusions 349$ A/ O3 t) z# d2 i0 l. N, Z
9.3.8 Stiffness-Loss Maps 350+ L0 X) H' C% O4 |: A% G" c
9.4 Bounds on the Viscoelastic Properties 353
7 q% z" @/ f' N2 z" Z& i9.5 Extremal Composites 354
# _9 l' i; `" y, c) R3 L5 B' l9.6 Biological Composite Materials 3567 X7 O) b0 r' S: [4 m
9.7 Poisson’s Ratio of Viscoelastic Composites 357: i3 T' C0 r/ P2 g* _. q+ ]" I
9.8 Particulate and Fibrous Composite Materials 358
9 w# X9 E- Q, |; H9.8.1 Structure 3586 u6 r% p+ M4 G0 Z2 K9 ~6 h
9.8.2 Particulate Polymer Matrix Composites 359* d8 B! m: S) r) }2 R, H& J, \6 l/ j6 E
9.8.3 Fibrous Polymer Matrix Composites 361
% s2 j" K& A! Q9.8.4 Metal–Matrix Composites 362+ o$ N8 j- y: @( X" y2 F4 G, N" r3 m
9.9 Cellular Solids 363
+ F/ Q9 h1 B$ {& D0 }9.10 Piezoelectric Composites 366/ E, a. P3 {% B2 N' L! Z8 Y
9.11 Dispersion of Waves in Composites 366/ _- t6 G  G& Z8 q3 ~4 ]; O
9.12 Summary 367
* y; u' ^6 B8 Y' Y5 @9.13 Examples 3673 N, ?0 Y8 e- a& ?7 [; Z! N9 E
9.14 Problems 370
5 I$ X6 Y# O. V+ p& T# l- zBibliography 370
: v$ Z* g# }) c4 a0 M0 }7 g3 D/ T& I8 y0 K6 U4 \

' @7 w- x, x* d3 @, b; q' B+ [: A2 h7 {
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
! x, `. t' N% p" X, z10.1 Introduction 377
# h6 t6 M  m, q5 Z! u% v& H5 S* W10.2 A Viscoelastic Earplug: Use of Recovery 377* a, E) T& ?8 T1 i+ {0 k- _
10.3 Creep and Relaxation of Materials and Structures 3780 q3 e! q# p" l& o
10.3.1 Concrete 3788 ]# M* S, i& N* k/ \
10.3.2 Wood 378& f; r: Q7 B8 K
10.3.3 Power Lines 379+ E5 x! X& W$ v7 I
10.3.4 Glass Sag: Flowing Window Panes 380
7 I/ q9 e% V, P10.3.5 Indentation: Road Rutting 380- W, i. p5 l' ^: U* O& }
10.3.6 Leather 3815 J8 ?! I( Y4 Y, g# F
10.3.7 Creep-Resistant Alloys and Turbine Blades 381' s" p7 m2 B$ p( n) C2 R2 j
10.3.8 Loosening of Bolts and Screws 382
5 n+ X8 ^) f; K& G/ O10.3.9 Computer Disk Drive: Case Study of Relaxation 384
' ^0 B1 }/ O3 u7 C+ g10.3.10 Earth, Rock, and Ice 385
7 t# i2 s, y$ }- f  `3 l. ?10.3.11 Solder 386" |6 ~% x# q) {  Q" J+ n5 ]0 [( v
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
6 Q3 q% I4 I- }6 @10.3.13Tires: Flat-Spotting and Swelling 388
* w8 C( l8 L. X) F# t10.3.14Cushionsfor Seats and Wheelchairs 388
* i9 p3 z4 b5 O8 S7 @10.3.15 Artificial Joints 3894 ^2 ], B, w! O. c$ M/ C# T2 Y2 G
10.3.16 Dental Fillings 389' @& E1 U8 V' [" j5 v. Q- N
10.3.17 Food Products 3899 i6 N  H7 r2 v2 _
10.3.18 Seals and Gaskets 390
, v" y  F3 S! r7 ^! U10.3.19 Relaxationi nM usical Instrument Strings 390
. U  r  ]: q( A0 L10.3.20 Winding of Tape 391
. s' D& m$ A8 N9 a. O! E10.4 Creep and Recovery in Human Tissue 391
# o( {1 u( k4 G0 F+ k/ N# |* a- E10.4.1 Spinal Discs: Height Change 391
$ _+ M/ T0 {3 e8 T, Z. y10.4.2 The Nose 392
8 L9 C, s; T) o( j) w6 J10.4.3 Skin 392
% ~% O2 L6 Z( Z10.4.4 The Head 393
& K- P9 K7 @* r0 V10.5 Creep Damage and Creep Rupture 394) O7 E! T8 \8 F( f
10.5.1 Vajont Slide 3948 {1 v8 P4 U! J- [
10.5.2 Collapse of a Tunnel Segment 394! p& A6 f. P) I. c# b; S
10.6 Vibration Control and Waves 394
0 m1 {: V; O/ S1 W10.6.1 Analysis of Vibration Transmission 394
0 `: R9 x8 _" `' H  w! C* J& p10.6.2 Resonant (Tuned) Damping 397
; x$ F# b$ G" t+ J10.6.3 Rotating Equipment Vibration 397
5 b8 X, e# ]+ j10.6.4 Large Structure Vibration: Bridges and Buildings 398
5 k, u! k4 ]3 L1 L10.6.5 Damping Layers for Plate and Beam Vibration 399, i  s8 z( ~" n+ G6 f: y
10.6.6 Structural Damping Materials 400
: v$ i% ?. @# R- {10.6.7 Piezoelectric Transducers 402) [: C) P0 T* w, m" d) ^$ ]! U1 U% R
10.6.8 Aircraft Noise and Vibration 402
. X# k$ p! D7 W10.6.9 Solid Fuel Rocket Vibration 404# O; U- T9 Y% r6 I; P- I  r
10.6.10 Sports Equipment Vibration 404
  b( ~* x! I+ W8 X; ^( h10.6.11 Seat Cushions and Automobiles: Protection of People 404& _# L2 @9 E& Q4 b+ b0 o5 h
10.6.12 Vibrationi n ScientificI nstruments 406
8 i3 x: f, ~! ^$ ?+ ?10.6.13 Waves 406, ^2 f. @, N7 x9 J
10.7 “Smart” Materials and Structures 407
8 W- S+ }( j! A0 Z6 g10.7.1 “Smart” Materials 407
+ J( R5 y6 B* e( `/ m: @10.7.2 Shape Memory Materials 408
3 Q: D! f) w9 L10.7.3 Self-Healing Materials 409# U5 v1 @3 v: @
10.7.4 Piezoelectric Solid Damping 409
, ?+ L+ y* y/ ]" K$ [, g10.7.5 Active Vibration Control: “Smart” Structures 409
" z- k7 r! w! V10.8 Rolling Friction 409
; d: L5 Y5 V$ P1 H: M: Z6 n4 O. K) Z2 U; W10.8.1 Rolling Analysis 410
$ X! x6 C. ^9 W) o10.8.2 Rolling of Tires 411
* m' ^4 ~" H3 ]9 y10.9 Uses of Low-Loss Materials 412- J6 B" [& P6 c, I  D% K
10.9.1 Timepieces 412
$ N) A3 L4 O1 R# B, o4 H. T10.9.2 Frequency Stabilization and Control 413
$ I; g1 H5 M2 [10.9.3 Gravitational Measurements 413
& D8 u: k, b# H) _5 o+ {% M  M10.9.4 Nanoscale Resonators 414
0 q+ M& j. U1 o7 [10.10 Impulses, Rebound, and Impact Absorption 414
3 q9 M! k5 p+ \4 y% u% }10.10.1 Rationale 414
  P7 S, ^- U4 i* S) l* Q. S10.10.2 Analysis 4158 E6 J/ {* i; b  H8 l; c7 V8 m
10.10.3 Bumpers and Pads 418. }, [2 e  Z& W8 }( e
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
: Z0 q# y& `2 ], E0 D& }: W  H- w10.10.5 Toughness of Materials 419" r' ?& G0 `7 _. _1 q( Z; m
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 4203 x* ~1 L! K$ X3 [
10.11Rebound of a Ball 4218 ]$ W4 j+ _: E, R
10.11.1 Analysis 4211 b3 |+ z' g# H, l) ?# I
10.11.2 Applications in Sports 422
9 q9 x5 v0 [, q8 W1 j; W10.12 Applications of Soft Materials 424
$ c% o2 D/ X2 R& g+ U10.12.1 Viscoelastic Gels in Surgery 4249 J$ A' l/ m$ S" c( M0 p7 P
10.12.2 Hand Strength Exerciser 424% o& H& o0 O  I- w, t# x1 [( V
10.12.3 Viscoelastic Toys 424
  P, S- O4 }2 i' w- `4 E10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425% z1 x8 l; t5 Z6 h
10.13 Applications Involving Thermoviscoelasticity 425
# B9 Q; C' X+ J6 R" q10.14 Satellite Dynamics and Stability 426
, w, n  Q4 Q$ E, O: q& t) r10.15 Summary 428
, Q  u$ e9 P6 \* o10.16 Examples 429
! o* f" L3 r* n# {/ _+ r$ H10.17 Problems 4310 P$ s5 P* h6 k- A: J' w
Bibliography 431  t3 }8 d  i- C, p
9 E4 L3 o; Z8 _: M
' Y  {% F1 ~  H+ S# |  Y! P

$ U/ y8 Z) a: }3 ]A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
6 Q' G: R% o7 P% I1 pA.1 Mathematical Preliminaries 441
% B( H9 E  w- i6 L! z! kA.1.1 Introduction 441
- w1 h0 d/ r/ }" I0 dA.1.2 Functionals and Distributions 441
# i. R- x5 }. @1 ^A.1.3 Heaviside Unit Step Function 442$ U$ g1 `! j$ T* X3 }1 v& a
A.1.4 Dirac Delta 442- ?) G: m: S6 \+ F5 U( |
A.1.5 Doublet 443
( T. v: G9 j) S$ @( \A.1.6 Gamma Function 4452 g, @, [+ T  P* q; V8 d% T6 _
A.1.7 Liebnitz Rule 445" m- M& F: M: _: j. H( p
A.2 Transforms 445
: k8 S+ X3 c8 o) ^2 V( H0 qA.2.1 Laplace Transform 446: |2 V9 q9 C% T) q2 F
A.2.2 Fourier Transform 446
' t1 P' e! \) ^6 H2 TA.2.3 Hartley Transform 447& M$ Q# z4 t. m/ W
A.2.4 Hilbert Transform 4473 R7 @8 K! R1 a6 I; X& |, F4 m
A.3 Laplace Transform Properties 448
# b; U+ Y& w3 ], X4 N- c5 D* N( WA.4 Convolutions 449: i  ]" s* d; J: M4 m$ b, Z
A.5 Interrelations in Elasticity Theory 451, g) T4 Q# o5 F$ E1 B# y, j6 D
A.6 Other Works on Viscoelasticity 451
% v& G4 s1 A3 g; E5 {1 ?) }; D" DBibliography 452
9 N! T2 S9 q+ R/ \( ^4 N0 x/ i2 t
8 |' w3 A# K* T4 G! O) m
+ [3 r" s! L- L: SB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
: Z+ t" X/ [+ @7 m7 s% C' ~B.1 Principal Symbols 455+ E8 Q3 S# @7 `( n/ N8 L
Index 457
" |- T. \# Z/ V- D9 Y6 ]9 f% }5 a6 x$ n0 u5 a/ C
, ], e' m: K! v5 `# E

本版積分規(guī)則

小黑屋|手機(jī)版|Archiver|機(jī)械社區(qū) ( 京ICP備10217105號(hào)-1,,京ICP證050210號(hào),,浙公網(wǎng)安備33038202004372號(hào) )

GMT+8, 2025-2-15 07:36 , Processed in 0.069199 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回復(fù) 返回頂部 返回列表