|
誤差,、精度與不確定度是應(yīng)該搞清楚的概念,,但這些概念互相聯(lián)系又有區(qū)別,也常常使人不知所蕓,。; T2 {1 ~1 }+ S; o
在此略作論述,,希望能引起大家討論。5 w% ^0 m% G( k, u: Q
一,、誤差的基本概念:
, J# D& O7 P: P3 w: h8 ]6 X% |1.誤差=測(cè)得值-真值,;因此,誤差是一個(gè)值,,數(shù)學(xué)上就是坐標(biāo)軸上的一個(gè)點(diǎn),,是具有正負(fù)號(hào)的一個(gè)數(shù)值。
4 |8 D/ q8 H0 N5 S* w絕對(duì)誤差: 絕對(duì)誤差=測(cè)量值-真值(約定真值)在檢定工作中,,常用高一等級(jí)準(zhǔn)確度的標(biāo)準(zhǔn)作為真值而獲得絕對(duì)誤差,。7 _3 O. F4 Q2 p( |- D
相對(duì)誤差=絕對(duì)誤差/真值X100%,相對(duì)誤差沒有單位,,但有正負(fù),。8 F2 c/ A& b0 J5 |9 y
引用誤差=示值誤差/測(cè)量范圍上限(或指定值)X100%% Y- ^$ h; c- j
引用誤差是一種簡(jiǎn)化和實(shí)用方便的儀器儀表示值的相對(duì)誤差。
1 [8 z5 A) N7 w0 I! }3 h系統(tǒng)誤差:在重復(fù)性條件下,,對(duì)同一被測(cè)量進(jìn)行無(wú)限多次測(cè)量所得結(jié)果的平均值與被測(cè)量的真值之差,。9 e Y# d- { t2 h6 i3 H9 B1 G
隨機(jī)誤差:測(cè)量結(jié)果與在重復(fù)性條件下,對(duì)同一被測(cè)量進(jìn)行無(wú)限多次測(cè)量所得結(jié)果的平均值之差,。
" k f: {( |: L6 f$ I6 v粗大誤差:超出在規(guī)定條件下預(yù)期的誤差,。
; ?" }$ [1 s' [0 m% h) k. b/ _$ s精度:
- F" b& u8 x) e精度細(xì)分為:準(zhǔn)確度:系統(tǒng)誤差對(duì)測(cè)量結(jié)果的影響。精密度:隨機(jī)誤差對(duì)測(cè)量結(jié)果的影響,。精確度:系統(tǒng)誤差和隨機(jī)誤差綜合后對(duì)測(cè)量結(jié)果的影響,。精度是誤差理論中的說(shuō)法,與測(cè)量不確定度是不同的概念,,在誤差理論中,,精度定量的特征可用目前的測(cè)量不確定度(對(duì)測(cè)量結(jié)果而言)和極限誤差(對(duì)測(cè)量?jī)x器儀表)來(lái)表示。對(duì)測(cè)量而言,,精密度高的準(zhǔn)確度不一定高,,準(zhǔn)確度高的精密度不一定高,但精確度高的準(zhǔn)確度與精密度都高,,精度是精確度的簡(jiǎn)稱,。目前,不提倡精度的說(shuō)法。
+ y6 y" p* i ^/ |5 R三,、測(cè)量不確定度:: E7 ~- r4 ?4 d9 H
1.定義:表征合理地賦予被測(cè)量之值地分散性,,與測(cè)量結(jié)果相聯(lián)系地參數(shù)。4 T- a) @7 m& ~
(1)此參數(shù)可以是諸如標(biāo)準(zhǔn)差或其倍數(shù),,或說(shuō)明了置信水準(zhǔn)的區(qū)間的半寬度,。( R3 |3 E4 ]: b( z3 C% X
(2)測(cè)量不確定度由多個(gè)分量組成。其中一些分量可用測(cè)量列結(jié)果的統(tǒng)計(jì)分布估算,,并用實(shí)驗(yàn)標(biāo)準(zhǔn)差表征,。另一些分量則可用基于經(jīng)驗(yàn)或其他信息的假定概率分布估算,也可用標(biāo)準(zhǔn)偏差表征,。
6 ?" x& U( W7 z. m3 C2 g(3)測(cè)量結(jié)果應(yīng)理解為被測(cè)量之值的最佳估計(jì),,而所有的不確定度分量均貢獻(xiàn)給了分散性,包括那些由系統(tǒng)效應(yīng)引起的(如,,與修正值和參考測(cè)量標(biāo)準(zhǔn)有關(guān)的)分量,。
! C7 [8 n; _6 A" }3 K由此可以看出,測(cè)量不確定度與誤差,,精度在定義上是不同的,。因此,其概念上的差異也造成評(píng)價(jià)方法上的不同,。8 q1 A, @0 k9 s h5 O: a. `3 E/ _
四,、測(cè)量誤差和測(cè)量不確定度的主要區(qū)別 3 H C* [( K7 v" k4 u2 f9 {
1.定義上的區(qū)別:誤差表示數(shù)軸上的一個(gè)點(diǎn),不確定度表示數(shù)軸上的一個(gè)區(qū)間,; & E. b: i7 ~8 Q; D7 N R: P+ ?5 T
2.評(píng)價(jià)方法上的區(qū)別:誤差按系統(tǒng)誤差與隨機(jī)誤差評(píng)價(jià),,不確定度按A類B類評(píng)價(jià); ( m3 ^" h" C- p/ N
3.概念上的區(qū)別:系統(tǒng)誤差與隨機(jī)誤差是理想化的概念,,不確定度只是使用估計(jì)值,; / k6 ?. o. o3 e0 }2 f1 R
4.表示方法的區(qū)別:誤差不能以±的形式出現(xiàn),不確定度只能以±的形式出現(xiàn),; , t3 G7 r+ z' Z7 p7 K
5.合成方法的區(qū)別:誤差以代數(shù)相加的方法合成,,不確定度以方和根的方法合成,; + Y% z& V' @9 p
6.測(cè)量結(jié)果的區(qū)別:誤差可以直接修正測(cè)量結(jié)果,,不確定度不能修正測(cè)量結(jié)果;誤差按其定義,,只和真值有關(guān),,不確定度和影響測(cè)量的因素有關(guān); 7 q- ]/ @% H9 A( W
7.得到方法的區(qū)別:誤差是通過(guò)測(cè)量得到的,,不確定度是通過(guò)評(píng)定得到的,; # c" ?9 i# n& ]$ D% O: A
8.操作方法的區(qū)別:系統(tǒng)誤差與隨機(jī)誤差難于操作,不確定評(píng)定易于操作;
' {8 I7 K$ a! G1 F" S誤差與測(cè)量不確定度是相互關(guān)聯(lián)的,,就是說(shuō),,測(cè)量誤差也包含不確定度,反之,,評(píng)定得到的不確定度也還是有誤差,。
1 t0 |; _$ z& m5 I7 w: x精度是按照誤差的分類進(jìn)行評(píng)價(jià)的,但在誤差合成的方法上與測(cè)量不確定度是不同的,,系統(tǒng)誤差按照代數(shù)和合成,,隨機(jī)誤差按方和根法合成,而系統(tǒng)誤差與隨機(jī)誤差的合成則有按標(biāo)準(zhǔn)差合成的,,有按極限誤差合成的,。因此,其合成的方法并不統(tǒng)一,。3 U& m9 L" d+ O/ g ?$ W/ x2 \
目前,,在測(cè)量領(lǐng)域,國(guó)際上通用的是測(cè)量不確定度方法,,精度的說(shuō)法目前已經(jīng)不再使用,,本貼希望通過(guò)一些簡(jiǎn)單的介紹,能夠?qū)Υ蠹以谡`差,,精度及測(cè)量不確定度的概念上有所明確,,不致引起一些錯(cuò)誤有所幫助。 |
|